OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 16 — Aug. 15, 2011
  • pp: 2372–2378

Tunable Single-Polarization Single-Mode Microstructured Polymer Optical Fiber

Yovanny A. V. Espinel, Marcos A. R. Franco, and Cristiano M. B. Cordeiro

Journal of Lightwave Technology, Vol. 29, Issue 16, pp. 2372-2378 (2011)

View Full Text Article

Acrobat PDF (1093 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A new procedure to obtain single-polarization single-mode polymeric optical fibers is reported. The selective polarization confinement loss mechanism is obtained by applying external hydrostatic pressure in a specially designed side-hole microstructured polymer optical fiber. It is shown that, at λ = 588 nm, pressure around 380 bar allows inducing confinement loss as high as 35dB/m for one polarization state while the other is guided with low loss (3 x 10-3 dB/m). The loss mechanism is shown to be related to coupling between the fundamental core modes and the cladding modes of the pressurized fiber. Finally, the possibility of tuning the single-polarization single-mode state with the input wavelength with fixed pressure or by introducing small changes in the inner ring of holes of the fiber cross section is presented.

© 2011 IEEE

Yovanny A. V. Espinel, Marcos A. R. Franco, and Cristiano M. B. Cordeiro, "Tunable Single-Polarization Single-Mode Microstructured Polymer Optical Fiber," J. Lightwave Technol. 29, 2372-2378 (2011)

Sort:  Year  |  Journal  |  Reset


  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
  3. M. Large, L. Poladian, G. Barton, M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer-Verlag, 2008).
  4. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, D. J. Richardson, "Understanding bending losses in Holey optical fibers," Opt. Commun. 227, 317-335 (2003).
  5. G. Statkiewicz, T. Martynkien, W. Urba'nczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent Holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
  6. T. Martynkien, M. Szpulak, W. Urbanczyk, "Modeling and measurement of temperature sensitivity in birefringent photonic crystal Holey fibers," Appl. Opt. 44, 7780-7788 (2005).
  7. M. C. J. Large, D. Blacket, C.-A. Bunge, "The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mpof)," Meas. Sci. Technol. 20, 034014 (2009).
  8. M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urba'nczyk, D. J. Webb, "Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Exp. 18, 12076-12087 (2010).
  9. K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
  10. A. D. J. L. C. M. Delgado-Pinar,, M. V. Andrés, "High extinction ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
  11. R. Li-Yong, W. Han-Yi, Z. Ya-Ni, Y. Bao-Li, Z. Wei, "Theoretical design of single-polarization single-mode microstructured polymer optical fibres," Chin. Phys. Lett. 24, 1298-1301 (2007).
  12. Y.-N. Zhang, "Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer," J. Mod. Opt. 55, 3563-3571 (2008).
  13. D. A. Nolan, M.-J. Li, X. Chen, J. Koh, "Single polarization fibers and applications," Opt. Fiber Commun. Conf. (Opt. Soc. Amer.) WashingtonDC (2006) no. OWA1.
  14. Y. A. V. Espinel, M. A. R. Franco, C. M. B. Cordeiro, "Pressure induced single-polarization single-mode microstructured polymer optical fiber," Latin Amer. Opt. Photon. Conf. (Opt. Soc. Amer.) WashingtonDC (2010) no. WE27.
  15. M. J. Weber, CRC Handbook on Laser Science and Technology, Supplement 2: Opticals Materials (CRC Press, 1995).
  16. R. M. Waxler, D. Horowitz, A. Feldman, "Optical and physical parameters of plexiglas 55 and lexan," Appl. Opt. 18, 101-104 (1979).
  17. X. Chen, M.-J. Li, J. Koh, A. Artuso, D. A. Nolan, "Effects of bending on the performance of hole-assisted single polarization fibers," Opt. Exp. 15, 10629-10636 (2007).
  18. H. M. Xie, P. Dabkiewicz, R. Ulrich, K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett. 11, 333-335 (1986).
  19. M. Szpulak, T. Martynkien, W. Urbanczyk, "Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure," Proc. 8th Int. Conf. Transparent Opt. Netw. 5th Eur. Symp. Photon. Cryst. (2006) pp. 174-177.
  20. D. Penninckx, N. Beck, "Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices," Appl. Opt. 44, 7773-7779 (2005).
  21. T. A. Birks, J. C. Knight, P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  22. G. C. Balvedi, M. A. R. Franco, "Effect of coupling between fundamental and cladding modes on bending losses in single-polarization single-mode photonic crystal fiber," Proc. Amer. Inst. Phys. Conf. (2008) pp. 137-140.
  23. J. Olszewski, M. Szpulak, W. Urba'nczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Exp. 13, 6015-6022 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited