OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 16 — Aug. 15, 2011
  • pp: 2410–2421

Scalability and Energy Consumption of Optical and Electronic Packet Switching

Rodney S. Tucker

Journal of Lightwave Technology, Vol. 29, Issue 16, pp. 2410-2421 (2011)

View Full Text Article

Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper compares the scalability and energy consumption of switch fabrics for optical and electronic packet switching. In particular, arrayed-waveguide-grating (AWG)-based switches, semiconductor optical amplifier (SOA) gate arrays, electro-optic phased-array switches, and microresonator-based switches are compared with state-of-the-art electronic switch fabrics. The analysis includes the key contributors to energy consumption and the scaling capabilities of each technology. To provide a fair comparison, the analysis takes into account the optical-to-electronic and electronic-to-optical converters and the multiplexers and demultiplexers needed in electronic packet switches. We show that optical switch fabrics generally become more energy efficient as the data rate increases, and AWG and microresonator-based switches consume marginally less energy than electronic switch fabrics at bit rates above about 100 Gb/s. However, optical packet switches do not appear to offer significant throughput improvements or energy savings compared to electronic packet switches. A key impediment to the scaling of optical switch fabrics is the energy consumed in the electronic circuits that drive the individual optical devices in the switch fabric and the energy consumed by the network of control lines that feed these electronic drivers. Ultimately, the energy consumption of optical packet switches is limited by the optical-to-electronic and electronic-to-optical converters required for packet header recognition and header replacement.

© 2011 IEEE

Rodney S. Tucker, "Scalability and Energy Consumption of Optical and Electronic Packet Switching," J. Lightwave Technol. 29, 2410-2421 (2011)

Sort:  Year  |  Journal  |  Reset


  1. D. Blumenthal, P. R. Prucnal, L. Thylen, "Performance of an 8$\,\times\,$8 LiNbO$_3$ switch matrix as a gigahertz self-routing switching node," Electron. Lett. 23, 1359-1360 (1987).
  2. D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, J. R. Sauer, "Demonstration of a deflection routing 2$\,\times\,$2 photonic switch for computer interconnects," IEEE Photon. Technol. Lett. 4, 169-173 (1992).
  3. W. L. Ha, R. M. Fortenberry, R. S. Tucker, "Demonstration of photonic fast packet switching at 700 Mb/s data rate," Electron. Lett. 27, 789-790 (1991).
  4. J. Spring, R. S. Tucker, "Photonic 2$\,\times\,$2 packet switch with input buffers," Electron. Lett. 29, 284-285 (1993).
  5. P. E. Green, Jr.L. A. Coldren, K. M. Johnson, J. G. Lewis, C. M. Miller, J. F. Morrison, R. Olshansky, R. Ramaswami, E. H. Smithand, Jr."All-optical packet-switched metropolitan-area network proposal," J. Lightw. Technol. 11, 754-763 (1993).
  6. R. Fortenberry, A. J. Lowery, W. L. Ha, R. S. Tucker, "Photonic packet switch using semiconductor optical amplifier gates," Electron. Lett. 27, 1305-1307 (1991).
  7. G. K. Chang, J. Yu, Y. K. Yeo, A. Chowdhury, Z. Jia, "Enabling technologies for next-generation optical packet-switching networks," Proc. IEEE 94, 892-910 (2006).
  8. D. Blumenthal, P. Prucnal, J. Sauer, "Photonic packet switches: Architectures and experimental implementations," Proc. IEEE 82, 1650-1667 (1994).
  9. S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic internet," J. Lightw. Technol. 24, 4468-4492 (2006).
  10. R. S. Tucker, W. Zhong, "Photonic packet switching: An overview," IEICE Trans. E82-B, 254-264 (1999).
  11. J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, M. Zirngibl, "Optical switch fabrics for ultra-high-capacity IP routers," J. Lightw. Technol. 21, 2839-2850 (2003).
  12. R. S. Tucker, "Optical packet switching meets mythbusters," presented at the Opt. Fiber Commun. Conf./Natl. Fiber Opt. Eng. Conf. Los AngelesCA (2011).
  13. R. Gaudino, G. G. Castillo, F. Neri, J. M. Finochietto, "Can simple optical switch fabrics scale to terabit/s switch capacities?," J. Opt. Commun. Netw. 1, B56-B69 (2009).
  14. R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightw. Technol. 24, 4655-4673 (2006).
  15. R. S. Tucker, "Optical packet switching: A reality check," Opt. Switch. Network. 5, 2-9 (2008).
  16. R. S. Tucker, S. S. Mughal, K. Hinton, "In search of the elusive all-optical packet buffer," Proc. Int. Conf. Photon. Switch. (2007) pp. 3-4.
  17. R. Van Caenegem, J. M. Martinez, D. Colle, M. Pickavet, P. Demeester, F. Ramos, J. Marti, "From IP over WDM to all-optical packet switching: Economical view," J. Lightw. Technol. 24, 1638-1645 (2006).
  18. International Technology Roadmap for Semiconductors, 2009 Edition (2009) (2010) http://public.itrs.net [Online]. Available:.
  19. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, J. R. Schneider, M. Ziari, F. Kish, D. Welch, "InP photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 16, 1113-1125 (2010).
  20. V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, 1965).
  21. R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Topics Quantum Electron. 17, 245-260 (2011).
  22. H. Teimoori, D. Apostolopoulos, K. G. Vlachos, C. Ware, D. Petrantonakis, L. Stampoulidis, H. Avramopoulos, D. Erasme, "Optical-logic-gate aided packet-switching in transparent optical networks," J. Lightw. Technol. 26, 2848-2856 (2008).
  23. R. S. Tucker, "Optics versus electronics for high-speed switching and signal processing," Proc. Photon. Soc. Summer Top. Meeting (2010) pp. 111-112.
  24. N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, N. McKeown, "Buffer sizing in all-optical packet switches," presented at the Opt. Fiber Commun. Conf./Natl. Fiber Opt. Eng. Commun. Conf. AnaheimCA (2006).
  25. R. F. Kalman, L. G. Kazovsky, J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048-1051 (1992).
  26. R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Topics Quantum Electron. 17, 261-274 (2011).
  27. I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. De Vries, E. Smalbrugge, M. K. Smit, H. Dorren, Y. Nakano, "Monolithically integrated InP 1$\,\times\,$16 optical switch with wavelength-insensitive operation," IEEE Photon. Technol. Lett. 22, 143-145 (2010).
  28. R. A. Spanke, "Architectures for large nonblocking optical space switches," IEEE J. Quantum Electron. 22, 964-967 (1986).
  29. T. Tanemura, Y. Nakano, "Design and scalability analysis of optial phased-array $1 \times N$ switch on planar lightwave circuit," IEICE Electron. Exp. 5, 603-609 (2008).
  30. A. Bianco, D. Cuda, R. Gaudino, G. Gavilanes, F. Neri, M. Petracca, "Scalability of optical interconnects based on microring resonators," IEEE Photon. Technol. Lett. 22, 1081-1083 (2010).
  31. B. G. Lee, W. M. J. Green, J. Van Campenhout, C. L. Schow, A. V. Rylyakov, S. Assefa, M. Yang, J. Rosenberg, J. A. Kash, Y. A. Vlasov, "Comparison of ring resonator and Mach–Zehnder photonic switches integrated with digital CMOS drivers," presented at the IEEE Photon. Soc. 23rd Annu. Meeting DenverCO (2010).
  32. Vitesse VSC3144-11 Data Sheet [Online]. Available: http://www.vitesse.com.
  33. A. V. Krishnamoorthy, K. W. Goossen, W. Jan, Z. Xuezhe, R. Ho, L. Guoliang, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, F. Dazeng, M. Asghari, T. Pinguet, J. E. Cunningham, "Progress in low-power switched optical interconnects," IEEE J. Sel. Topics Quantum Electron. 17, 357-376.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited