OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 16 — Aug. 15, 2011
  • pp: 2428–2435

Design Principle for Realizing Low Bending Losses in All-Solid Photonic Bandgap Fibers

Tadashi Murao, Koyuru Nagao, Kunimasa Saitoh, and Masanori Koshiba

Journal of Lightwave Technology, Vol. 29, Issue 16, pp. 2428-2435 (2011)


View Full Text Article

Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, the structural dependence of factor which mainly affects a bending loss property is theoretically investigated in all-solid photonic bandgap fibers (PBGFs). A design principle for realizing low bending losses is successfully figured out for the first-order photonic bandgap (PBG). In particular, one of the origins which causes the variation of bending loss property for each structural parameter is identified. In addition, we show that exploitation of a large pitch relative to a rod diameter, aiming to realize a large-mode area (LMA) structure, leads to a significant degradation of the bending loss property. Moreover, it is demonstrated that a V-value which is proposed for all-solid PBGFs is also reduced significantly for the LMA condition. The origin of the degradation is attributed to the newly-excited Bloch state which determines the second-order PBG edge.

© 2011 IEEE

Citation
Tadashi Murao, Koyuru Nagao, Kunimasa Saitoh, and Masanori Koshiba, "Design Principle for Realizing Low Bending Losses in All-Solid Photonic Bandgap Fibers," J. Lightwave Technol. 29, 2428-2435 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-16-2428


Sort:  Year  |  Journal  |  Reset

References

  1. J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, D. M. Bird, "Solid photonic bandgap fibres and applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
  2. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
  3. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
  4. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Exp. 13, 2503-2511 (2005).
  5. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, M. Douay, "Fabrication and characterization of an all-solid 2-D photonic bandgap fiber with a low-loss region (${<}20$ dB/km) around 1550 nm," Opt. Exp. 13, 8452-8459 (2005).
  6. A. Wang, A. K. George, J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
  7. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Exp. 14, 6291-6296 (2006).
  8. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 $\mu$m," Opt. Exp. 15, 316-324 (2007).
  9. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, J. Luo, "Low-loss all-solid photonic bandgap fiber," Opt. Lett. 32, 1023-1025 (2007).
  10. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, M. Douay, "Improvements of solid-core photonic bandgap fibers by means of interstitial air holes," Opt. Lett. 32, 1719-1721 (2007).
  11. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
  12. C. B. Olausson, C. I. Falk, J. K. Lyngs, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, J. Broeng, "Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre," Opt. Exp. 16, 13657-13662 (2008).
  13. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngs, J. Broeng, "High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm," Opt. Exp. 17, 447-454 (2009).
  14. V. Pureur, J. C. Knight, B. T. Kuhlmey, "Higher order guided mode propagation in solid-core photonic bandgap fibers," Opt. Exp. 18, 8906-8915 (2010).
  15. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
  16. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Exp. 11, 1243-1251 (2003).
  17. T. Murao, K. Saitoh, T. Taru, T. Nagashima, K. Maeda, T. Sasaki, M. Koshiba, "Bend-insensitive and effectively single-moded all-solid photonic bandgap fibers with heterostructured cladding," Proc. ECOC (2009).
  18. T. Murao, K. Saitoh, K. Nagao, M. Koshiba, "Design principle for low bending losses in all-solid photonic bandgap fibers," Proc. CLEO/QELS (2010).
  19. T. Murao, K. Saitoh, M. Koshiba, "Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding," Opt. Exp. 19, 1713-1727 (2011).
  20. T. Murao, K. Saitoh, M. Koshiba, "Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers," Opt. Exp. 17, 7615-7629 (2009).
  21. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Exp. 14, 5688-5698 (2006).
  22. T. A. Birks, G. J. Pearce, D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Exp. 14, 9483-9490 (2006).
  23. T. Murao, K. Nagao, K. Saitoh, M. Koshiba, "Understanding formation of photonic bandgap edge for maximum propagation angle in all-solid photonic bandgap fibers," J. Opt. Soc. Amer. B 28, 453-461 (2011).
  24. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, D. V. Kuksenkov, "Single-mode all-silica photonic bandgap fiber with 20- $\mu$m mode field diameter," Opt. Exp. 16, 11735-11740 (2008).
  25. K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  26. M. Perrin, Y. Quiquempois, G. Bouwmans, M. Douay, "Coexistence of total internal reflection and bandgap modes in solid core photonic bandgap fibre with interstitial air holes," Opt. Exp. 15, 13783-13795 (2007).
  27. M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, "Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers," J. Lightw. Technol. 23, 4169-4177 (2005).
  28. Y. Li, C. Wang, T. A. Birks, D. M. Bird, "Effective index method for all-solid photonic bandgap fibres," J. Opt. A 9, 858-861 (2007).
  29. Y. Li, D. M. Bird, T. A. Birks, "Bend loss in all-solid bandgap fibers revisited," J. Lightw. Technol. 28, 1368-1372 (2010).
  30. K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Exp. 14, 11128-11141 (2006).
  31. M. Koshiba, K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 29, 1739-1741 (2004).
  32. K. Saitoh, T. Murao, L. Rosa, M. Koshiba, "Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications," Opt. Fiber Technol. 16, 409-418 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited