OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 16 — Aug. 15, 2011
  • pp: 2475–2481

Efficient Iterative Time-Domain Beam Propagation Methods for Ultra Short Pulse Propagation: Analysis and Assessment

Husain M. Masoudi and Mohammad S. Akond

Journal of Lightwave Technology, Vol. 29, Issue 16, pp. 2475-2481 (2011)

View Full Text Article

Acrobat PDF (640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The time-domain beam propagation method (TD-BPM) has been implemented and analyzed using several iterative numerical techniques to model the propagation of ultra short pulses in optical structures. The methods depend on one-way non-paraxial time domain propagation that use Pade approximant formulation. Several numerical tests showed that the iterative TD-BPM techniques are very stable and converge using few iterations. From accuracy assessment compared to the FDTD, it has been observed that the longitudinal and the temporal steps sizes can be a number of orders of magnitude larger than the FDTD step sizes with little percentage difference. Computer performance analysis showed the TD-BPM is well suited for long dielectric structures interaction of short and ultra short pulse propagation.

© 2011 IEEE

Husain M. Masoudi and Mohammad S. Akond, "Efficient Iterative Time-Domain Beam Propagation Methods for Ultra Short Pulse Propagation: Analysis and Assessment," J. Lightwave Technol. 29, 2475-2481 (2011)

Sort:  Year  |  Journal  |  Reset


  1. P. Vasa, C. Ropers, R. Pomraenke, C. Lieau, "Ultra-fast nano-optics," Laser & Photon Rev. 3, 483-507 (2009).
  2. G. Steinmeyer, "A review of ultrafast optics and optoelectronics: Review article," J. Opt. Aperture Appl. Opt. 5, R1-R15 (2003).
  3. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  4. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  5. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, 2000).
  6. R. Mittra, Y. Liu, X. Yang, Y. Wenhua, Electromagnetic Simulation Techniques Based on the FDTD Method (Wiley, 2009).
  7. S. Ju, K. Jung, H. Kim, "Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme," IEEE Microw. Wireless Compon. Lett. 13, 414-416 (200).
  8. H. Rao, R. Scarmozzino, R. M. Osgood, "An improved ADI-FDTD method and its application to photonic simulations," IEEE Photon. Technol. Lett. 14, 477-479 (2002).
  9. S. G. García, T. W. Lee, S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propag. Lett. 1, 31-34 (2002).
  10. Q. Liu, Z. Chen, W. Yin, "An arbitrary-order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. Antennas Propag. 57, 2409-2417 (2009).
  11. F. Zheng, Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. Microw. Theory Tech. 49, 1006-1009 (2001).
  12. J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, H. Nakano, "A frequency dependent LOD-FDTD Method and its application to the analyses of plasmonic waveguide devices," IEEE J. Quantum Electron. 46, 40-49 (2010).
  13. K. Y. Jung, F. L. Teixeira, S. G. Garcia, R. Lee, "On numerical artifacts of the complex envelope ADI-FDTD method," IEEE Trans. Antennas Propag. 57, 491-498 (2009).
  14. J. Shibayama, M. Muraki, R. Takahashi, J. Yamauchi, H. Nakano, "Performance evaluation of several implicit FDTD methods for optical waveguide analysis," J. Lightw. Technol. 24, 2465-2471 (2006).
  15. J. N. Shibayama, M. Muraki, J. Yamauchi, H. Nakano, "Comparative study of several time-domain methods for optical waveguide analyses," J. Lightw. Technol. 23, 2285-2293 (2005).
  16. H. M. Masoudi, M. A. AlSunaidi, J. M. Arnold, "Time-domain finite-difference beam propagation method," IEEE Photon. Technol. Lett. 11, 1274-1276 (1999).
  17. H. M. Masoudi, M. A. AlSunaidi, J. M. Arnold, "Efficient time-domain beam propagation method for modeling integrated optical devices," J. Lightw. Technol. 19, 759-771 (2001).
  18. H. M. Masoudi, "A novel nonparaxial time-domain beam-propagation method for modeling ultrashort pulses in optical structures," J. Lightw. Technol 25, 3174-3185 (2007).
  19. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, 1994).
  20. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, 2003).
  21. F. A. Milinazzo, C. A. Zala, G. H. Brooke, "Rational square-root approximations for parabolic equation algorithms," J. Acoust. Soc. Amer. 101, 760-766 (1997).
  22. D. Yevick, D. J. Thomson, "Complex Padé approximants for wide-angle acoustic propagators," J. Acoust. Soc. Amer. 108, 2784-2790 (2000).
  23. H. Rao, M. J. Steel, R. Scarmozzino, R. M. Osgood, Jr."Complex propagators for evanescent waves in bidirectional beam propagation method," J. Lightw. Technol. 18, 1155-1160 (2000).
  24. M. D. Collins, "Applications and time-domain solution of higher-order parabolic equations in underwater acoustics," J. Acoust. Soc. Amer. 86, 1097-1102 (1989).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited