Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 17,
  • pp. 2592-2600
  • (2011)

Limitation Factor Analysis for Silicon-on-Insulator Waveguide Mach–Zehnder Interference-Based Electro-Optic Switch

Not Accessible

Your library or personal account may give you access

Abstract

The Mach–Zehnder interference (MZI) structure has played a significant role in research and development of the optical modulator/switch and silicon-on-insulator (SOI) waveguides have been increasingly developed to implement highly integrated photonic devices. In this paper, for the SOI-waveguide MZI-type electro-optic (EO) switch with free-carrier dispersion (FCD) effect, the extra optical absorption (EOA) loss caused by the FCD effect is analyzed and modeled. An intrinsic limitation factor existing in this device is found to be the tension between the EOA loss and the interaction length, resulting in a negative impact upon the device performance. The numerical calculations show that the millimeter-order interaction length has the lowest optical on-chip (OC) loss of about 0.8 and 1.8 dB at the OFF- and ON-state, respectively, and even a lowest OC imbalance of 1.0 dB between the two switching states. The influence of the coupling ratio of 3 dB waveguide directional coupler used in the MZI structure upon the switch performance is also studied, and a push–pull modulation scheme is proposed as an efficient solution to leveraging this intrinsic limitation caused performance decay with a combination of injection and depletion processes for the FCD effect. As a result, the optical OC loss is reduced to 1.0 dB, its imbalance is compressed to 0.2 dB, and the crosstalk at the OFF-state is also better than -21 dB. The relationship between the switching speed and the interaction length is also analyzed. As a vital condition for the FCD-based EO modulation of the switch, the dependence of free-carrier concentration modulation on the drive voltage and electrode gap is simulated via MEDICI software.

© 2011 IEEE

PDF Article
More Like This
Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers

Liangjun Lu, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Lett. 39(6) 1633-1636 (2014)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches

Haifeng Zhou, Yong Zhao, Wanjun Wang, Jianyi Yang, Minghua Wang, and Xiaoqing Jiang
Opt. Express 17(9) 7043-7051 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.