OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2690–2697

Merging Photonic Wire Lasers and Nanoantennas

Ziyuan Li, Haroldo T. Hattori, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2690-2697 (2011)

View Full Text Article

Acrobat PDF (1023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


One of the main goals of photonic integration is to combine different components that are capable of executing different functions. One of these functions is the generation of light: in this sense, photonic wire lasers may become a key component in future generations of integrated circuits because of their small footprints. Another is the generation of high-intensity electric fields that can be used to excite nonlinear effects, such as surface-enhanced Raman scattering, or to visualize nano-objects, in small regions and can be achieved by using plasmonic nanoantennas. In this paper, the combination of photonic wire lasers and plasmonic nanoantennas is examined. We show that a very compact photonic wire nanoantenna laser, which generates a high-intensity electric field inside the nanoantenna, can be produced.

© 2011 IEEE

Ziyuan Li, Haroldo T. Hattori, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish, "Merging Photonic Wire Lasers and Nanoantennas," J. Lightwave Technol. 29, 2690-2697 (2011)

Sort:  Year  |  Journal  |  Reset


  1. O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, P. D. Dapkus, "Two-dimensional photonic bandgap defect mode laser," Science 284, 1819-1821 (1999).
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
  3. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, "Single-fundamental-mode photonic crystal surface-emitting lasers," Appl. Phys. Lett. 80, 3608-3610 (2003).
  4. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, J. M. Fedeli, "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides," Opt. Exp. 13, 3310-3322 (2005).
  5. V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, C. Jagadish, "Photonic crystal phase detector," J. Opt. Soc. Am. B 25, 1532-1536 (2008).
  6. T. Matsumoto, T. Baba, "Photonic crystal k-vector super-prism," J. Lightw. Technol. 22, 917-922 (2004).
  7. H. T. Hattori, V. M. Schneider, R. M. Cazo, C. L. Barbosa, "Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures," Appl. Opt. 44, 3069-3076 (2005).
  8. R. M. Cazo, C. L. Barbosa, H. T. Hattori, V. M. Schneider, "Steady-state analysis of a directional square lattice band-edge photonic crystal laser," Microw. Opt. Technol. Lett. 46, 210-214 (2005).
  9. D. Ohnishi, T. Okano, M. Imada, S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Exp. 12, 1562-1568 (2004).
  10. M. Fujita, A. Sakai, T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser- design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Topics Quantum Electron. 5, 673-681 (1999).
  11. S. V. Boriskina, T. M. Benson, P. D. Sewell, A. I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures," IEEE J. Sel. Topics Quantum Electron. 12, 1175-1182 (2006).
  12. H. T. Hattori, "Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches," Appl. Opt. 47, 2178-2185 (2008).
  13. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, R. A. Logan, "Directional light coupling from microdisk lasers," Appl. Phys. Lett. 62, 562-563 (1993).
  14. S. Ando, N. Kobayashi, H. Ando, "Triangular-facet lasers coupled by a rectangular optical waveguide," Jpn. J. Appl. Phys. 36, L76-L78 (1997).
  15. H. T. Hattori, D. Y. Liu, H. H. Tan, C. Jagadish, "Large square resonator laser with quasi-single-mode operation," IEEE Photon. Technol. Lett. 21, 359-361 (2005).
  16. C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
  17. A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Exp. 13, 4237-4243 (2005).
  18. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Exp. 17, 20878-20884 (2009).
  19. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, G. Hofler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
  20. H. Fischer, O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Exp. 16, 9144-9154 (2008).
  21. A. R. Zain, N. P. Johnson, M. Sorel, R. M. De La Rue, "High quality-factor 1-D-suspended photonic crystal/photonic wire silicon waveguide micro-cavities," IEEE Photon. Technol. Lett. 21, 1789-1791 (2009).
  22. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, "Quantum cascade lasers with integrated plasmonic antenna-array collimators," Opt. Exp. 16, 19447-19461 (2008).
  23. Fullwave 4.0 RSOFT Design Group (1999) http://www.rsoftdesign.com.
  24. S. V. Boriskina, T. M. Benson, P. Sewell, A. I. Nosich, "Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness," J. Opt. Soc. Am. B 10, 1792-1796 (2005).
  25. H. Kuwata, H. Tamaru, K. Esumi, K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625 (2003).
  26. J. Wen, S. Romanov, U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Exp. 17, 5925-5932 (2009).
  27. N. Engheta, A. Salandrino, A. Alu, "Circuits elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
  28. A. Alu, N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008).
  29. W. Cai, W. Shin, S. Fan, M. Brongersma, "Elements for plasmonic nanocircuits with three-dimensional slot waveguides," Adv. Mater. 22, 5120-5124 (2010).
  30. H. T. Hattori, "Modal analysis of one-dimensional nonuniform arrays of square resonators," J. Opt. Soc. Am. B 25, 1873-1881 (2005).
  31. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  32. S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, M. Notomi, "20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption," Opt. Exp. 19, 2242-2250 (2011).
  33. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Buckovic, "Ultralow-threshold electrically pumped quantum-dot photonic crystal nanocavity laser," Nature Photon. 5, 297-300 (2011).
  34. D. Englund, H. Altug, B. Ellis, J. Vuckovic, "Ultrafast photonic crystal lasers," Laser Photon. Rev. 2, 264-274 (2008).
  35. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
  36. H. G. Park, S. H. Kim, M. K. Seo, Y. G. Ju, S. B. Kim, Y. H. Lee, "Characteristics of electrically driven two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 41, 1131-1141 (2005).
  37. G. Veronis, W. Suh, Y. Liu, M. Han, Z. Wang, R. W. Dutton, S. Fan, "Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes," J. Appl. Phys. 97, 044503 (2005).
  38. M. T. Hill, Y. S. Oel, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eljkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited