OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2732–2739

Graphene-Induced Nonlinear Four-Wave-Mixing and Its Application to Multiwavelength Q-Switched Rare-Earth-Doped Fiber Lasers

Zhengqian Luo, Min Zhou, Duanduan Wu, Chenchun Ye, Jian Weng, Jun Dong, Huiying Xu, Zhiping Cai, and Lujian Chen

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2732-2739 (2011)


View Full Text Article

Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We experimentally confirm that graphene within fiber laser cavities can generate four-wave-mixing (FWM) by observing the laser spectral broadening and the transition from the single-longitudinal-mode oscillation to multiple-longitudinal-mode one. Then, by simultaneously exploiting the graphene-induced nonlinear FWM and its super-broadband saturable absorption, we further achieve for the first time to the best of our knowledge, multiwavelength Q-switched Yb3+- or Er3+-doped fiber lasers at 1 μm and 1.5 μm wavebands, respectively. Simultaneous 23-wavelength Q-switching oscillation with a wavelength spacing of 0.2 nm is stably generated at 1.5 μm waveband. The multiwavelength Q-switched pulses have the minimum pulse duration of 2.5 μs, the maximum pulse energy of 72.5 nJ and a wide range of pulse-repetition-rate (PRR) from 2.8 to 63.0 kHz. At 1 μm waveband, we also obtain five-wavelength simultaneous lasing in Q-switching regime with the pulse duration of ~3μs, pulse energy of 10.3 nJ and PRR between 39.8 and 56.2kHz.

© 2011 IEEE

Citation
Zhengqian Luo, Min Zhou, Duanduan Wu, Chenchun Ye, Jian Weng, Jun Dong, Huiying Xu, Zhiping Cai, and Lujian Chen, "Graphene-Induced Nonlinear Four-Wave-Mixing and Its Application to Multiwavelength Q-Switched Rare-Earth-Doped Fiber Lasers," J. Lightwave Technol. 29, 2732-2739 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-18-2732


Sort:  Year  |  Journal  |  Reset

References

  1. F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, "Graphene photonics and optoelectronics," Nat. Photon. 4, 611-622 (2010).
  2. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, "Nanotube-polymer composites for ultrafast photonics," Adv. Mater. 21, 3874-3899 (2009).
  3. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Funct. Mater. 19, 3077-3083 (2009).
  4. A. Martinez, K. Fuse, B. Xu, S. Yamashita, "Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing," Opt. Exp. 18, 23054-23061 (2010).
  5. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Exp. 17, 17630-17635 (2009).
  6. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. Loh, "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker," Appl. Phys. Lett. 95, 141103 (2009).
  7. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett. 97, 203106 (2010).
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, "Graphene mode-locked ultrafast laser," Acs Nano 4, 803-810 (2010).
  9. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, A. C. Ferrari, "A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser," Nano Res. 3, 653-660 (2010).
  10. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction," Appl. Phys. Lett. 96, 051122 (2010).
  11. H. Kim, J. Cho, S. Y. Jang, Y. W. Song, "Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers," Appl. Phys. Lett. 98, 021104 (2011).
  12. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, K. P. Loh, "Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene," Opt. Lett. 35, 3622-3624 (2010).
  13. Z. Q. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, "Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser," Opt. Lett. 35, 3709-3711 (2010).
  14. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," Appl. Phys. Lett. 98, 073106 (2011).
  15. H. Yu, X. Chen, X. Hu, S. Zhuang, Z. Wang, X. Xu, J. Wang, H. Zhang, M. Jiang, "Graphene as a Q-switcher for neodymium-doped lutetium vanadate laser," Appl. Phys. Express 4, 022704 (2011).
  16. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov, "Coherent nonlinear optical response of graphene," Phys. Rev. Lett. 105, 97401 (2010).
  17. Z. Q. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, H. Xu, "Graphene-assisted multiwavelength erbium-doped fiber ring laser," IEEE Photon. Technol. Lett. 23, 501-503 (2011).
  18. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, "Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials," J. Infrared Millim. Terahz. Waves (2010) doi: 10.1007/s10762-010-9677-1.
  19. D. Li, M. B. Mller, S. Gilje, R. B. Kaner, G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol. 3, 101-105 (2008).
  20. S. Pan, C. Lou, Y. Gao, "Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter," Opt. Exp. 14, 1113-1118 (2006).
  21. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. Liu, B. Zhou, "Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers," Opt. Lett. 30, 952-954 (2005).
  22. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, D. N. Payne, "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett. 20, 875-877 (1995).
  23. X. M. Liu, C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
  24. Y. G. Han, T. V. A. Tran, S. B. Lee, "Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber," Opt. Lett. 31, 697-699 (2006).
  25. X. Xu, Y. Yao, X. Zhao, D. Chen, "Multiple four-wave-mixing processes and their application to multiwavelength erbium-doped fiber lasers," J. Lightw. Technol. 27, 2876-2885 (2009).
  26. J. J. Zayhowski, P. L. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2225 (1991).
  27. D. P. Zhou, L. Wei, B. Dong, W. K. Liu, "Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber," IEEE Photon. Technol. Lett. 22, 9-11 (2010).
  28. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, R. Moncorg, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
  29. R. Paschotta, R. H. Ring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, D. J. Richardson, "Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm," Opt. Lett. 24, 388-390 (1999).
  30. R. Herda, S. Kivist, O. G. Okhotnikov, "Dynamic gain induced pulse shortening in Q-switched lasers," Opt. Let. 33, 1011-1013 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited