OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2747–2753

A Silicon Photonic Interferometric Router Device Based on SCISSOR Concept

Marco Masi, Mattia Mancinelli, Alberto Battarelli, Romain Guider, Manga Rao Vanacharla, Paolo Bettotti, Jean-Marc Fedeli, and Lorenzo Pavesi

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2747-2753 (2011)

View Full Text Article

Acrobat PDF (918 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel wavelength routing device for optical on-chip network applications is presented. It is based on the constructive and destructive interferences that occur when two side-coupled integrated spaced sequences of resonators (SCISSORs) are coupled in parallel to a single common waveguide. Its potential application for coarse wavelength division multiplexing, i.e., band routing functionalities, and its robustness against fabrication tolerances and signal imbalances are analyzed. Design, simulation, fabrication, and experimental characterizations are described. We compare measurements of the fabricated device with simulations for the ideal and the actual device, where random variations in the geometrical parameters inherent in the fabrication process are considered. This allows demonstrating the concept of interferometric SCISSOR routing and to discuss the limits and advantages of coupled resonator-based design for routing.

© 2011 IEEE

Marco Masi, Mattia Mancinelli, Alberto Battarelli, Romain Guider, Manga Rao Vanacharla, Paolo Bettotti, Jean-Marc Fedeli, and Lorenzo Pavesi, "A Silicon Photonic Interferometric Router Device Based on SCISSOR Concept," J. Lightwave Technol. 29, 2747-2753 (2011)

Sort:  Year  |  Journal  |  Reset


  1. D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).
  2. A. Shacham, K. Bergman, L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. Comput. 57, 1246-1260 (2008).
  3. L. Pavesi, D. Lockwood, Topics in Applied Physics (Springer-Verlag, 2004).
  4. S. J. B. Yoo, "Future prospects of silicon photonics in next generation communication and computing systems," Electron. Lett. 45, 584-588 (2009).
  5. A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic, V. Stojanovic, "Silicon-photonic clos networks for global on-chip communication," Proc. 3rd ACM/IEEE Int. Symp. Netw.-on-Chip (2009) pp. 124-133.
  6. L. Liu, T. Spuesens, D. Van Thourhout, G. Morthier, L. Grenouillet, N. Olivier, J.-M. Fedeli, P. Rojo-Romeo, P. Rgreny, F. Mandorlo, R. Oroubtchouck, "200 mm wafer scale III-V/SOI technology for all-optical network-on-chip and signal processing," presented at the 7th Int. Conf. Group IV Photon. BeijingChina (2010) Conference Paper.
  7. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, "Silicon-on-insulator spectral filters fabricated with CMOS technology," IEEE J. Sel. Topics Quantum Electron. 16, 33-44 (2010).
  8. L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, "III-V/silicon-on-insulator nanophotonic cavities for optical networks-on-chip," J. Nanosci. Nanotechnol. 10, 1461-1472 (2010).
  9. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
  10. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, K. Bergman, "High-speed 2$\times$2 switch for multiwavelength silicon-photonic networks-on-chip," J. Lightw. Technol. 27, 2900-2907 (2009).
  11. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Krtner, H. I. Smith, "Silicon photonics for compact, energy-efficient interconnects," J. Opt. Netw. 6, 63-73 (2007).
  12. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O'Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, J. Mart, "High-speed modulation of a compact silicon ring resonator based on a reverse-biased p-n diode," Opt. Exp. 17, 21986-21991 (2009).
  13. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  14. J. E. Heebner, Q. Park, "SCISSOR solitons and other propagation effects in microresonator modified waveguides," J. Opt. Soc. Amer. B 19, 722-731 (2002).
  15. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, "Distributed and localized feedback in microresonator sequences for linear and nonlinear optics," J. Opt. Soc. Amer. B 21, 1818-1832 (2004).
  16. F. Xia, L. Sekaric, M. O'Boyle, Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
  17. J. Capmany, P. Munoz, J. D. Doemenech, M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Exp. 15, 10196-10206 (2007).
  18. S. Y. Cho, R. Soref, "Apodized SCISSORs for filtering and switching," Opt. Exp. 16, 19078-19090 (2008).
  19. Y. Vlasov, W. M. J. Green, F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nature Phot. 2, 242-246 (2008).
  20. M. A. Popovic', T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, F. X. Krtner, "Tunable, fourth-order silicon microring-resonator add-drop filters," Opt. Exp. 17, 14063-14068 (2009).
  21. M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J.-M. Fedeli, L. Pavesi, Optical Characterization of a SCISSOR Device submitted.
  22. M. L. Cooper, G. Gupta, J. S. Park, M. A. Schneider, I. B. Divliansky, S. Mookherjea, "Quantitative infrared imaging of silicon-on-insulator microring resonators," Opt. Lett. 35, 784-786 (2010).
  23. M. Baldi, G. Marchetto, Y. Ofek, "A scalable solution for engineering streaming traffic in the future internet," Comput. Netw. 51, 4092-4111 (2007).
  24. M. Masi, R. Orobtchouk, G. F. Fan, L. Pavesi, "Towards realistic modeling of ultra-compact racetrack resonators," J. Lightw. Technol. 28, 3233-3242 (2010).
  25. M. Masi, L. Pavesi, Light Combining for Phase Switching preparation.
  26. K. R. Hiremath, R. Stoffer, M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2005).
  27. R. Orobtchouk, VilleurbanneFrancePrivate Communication Université de Lyon.
  28. R. Orobtchouk, Mode Solver Based on a Full Vectorial Finite Difference Scheme and Developed for Internal Use VilleurbanneFrance Université de Lyon.
  29. W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007).
  30. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004).
  31. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
  32. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, G. C. Guo, "Analog to multiple electromagnetically induced transparency in all-optical drop filter systems," Phys. Rev. A 75, 063833-063836 (2007).
  33. X. Yang, M. Yu, D. L. Kwong, C. W. Wong, "All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystals cavities," Phys. Rev. Lett. 102, 173902-173904 (2009).
  34. D. Lockwood, L. Pavesi, Topics in Applied Physics (Springer-Verlag, 2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited