OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2818–2830

InP-Based Monolithically Integrated Tunable Wavelength Filters in the 1.6–1.8 $\mu$m Wavelength Region for Tunable Laser Purposes

Bauke W. Tilma, Yuqing Jiao, Peter J. van Veldhoven, Barry Smalbrugge, Huub P. M. M. Ambrosius, Peter J. Thijs, Xaveer J. M. Leijtens, Richard Nötzel, Meint K. Smit, and Erwin A. J. M. Bente

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2818-2830 (2011)


View Full Text Article

Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we present the design, fabrication, and characterization of two monolithically InP-based integrated electro-optically tunable filters. The combination of these filters can be used to achieve a filter with a narrow passband and a large free spectral range. These filters are designed to be used in an integrated tunable laser source in the 1600–1800 nm wavelength region using active–passive integration technology. The fact that these filters worked successfully shows that this integration technology, originally designed to be used around 1550 nm wavelength, can also be used successfully in the 1600–1800 nm wavelength region without a large penalty in performance. The two filters, a high-resolution arrayed waveguide grating-type filters and a low-resolution multimode interferometer-tree-type filter are made tunable using 5 mm long electro-optic phase modulators in the arms of the waveguide arrays. Measurements show that these filters can be tuned over a wavelength range of more than 100 nm with an accuracy of 0.1 nm (1% of the free spectral range) for the high-resolution filter and an accuracy of 9 nm (4% of the free spectral range) for the low-resolution filter.

© 2011 IEEE

Citation
Bauke W. Tilma, Yuqing Jiao, Peter J. van Veldhoven, Barry Smalbrugge, Huub P. M. M. Ambrosius, Peter J. Thijs, Xaveer J. M. Leijtens, Richard Nötzel, Meint K. Smit, and Erwin A. J. M. Bente, "InP-Based Monolithically Integrated Tunable Wavelength Filters in the 1.6–1.8 $\mu$m Wavelength Region for Tunable Laser Purposes," J. Lightwave Technol. 29, 2818-2830 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-18-2818


Sort:  Year  |  Journal  |  Reset

References

  1. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Topics Quantum Electron. 6, 988-999 (2000).
  2. T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, Y. Nakano, "InP-InGaAsP integrated 1$\,\times\,$5 optical switch using arrayed phase shifters," IEEE Photon. Technol. Lett. 20, 1063-1065 (2008).
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, "Optical coherence tomography—Principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
  4. T. Zimmermann, J. Rietdorf, R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Lett. 546, 87-92 (2003).
  5. P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochimica Acta A 54, 197-236 (1998).
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).
  7. M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110–1-071110–3 (2006).
  8. D. H. P. Maat, F. H. Groen, R. C. Horsten, Y. C. Zhu, P. E. W. Kruis, C. G. P. Herben, X. J. M. Leijtens, M. K. Smit, "Tunable phased array demultiplexer on InP featuring wide-range tuning and pass-band shaping," 9th Eur. Conf. Integr. Opt. TorinoItaly (1999) Postdeadline Papers.
  9. A. Q. Liu, X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2006).
  10. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, M. J. Wale, "Widely tunable DS-DBR laser width monolithically integrated SOA: Design and performance," IEEE J. Sel. Topics Quantum Electron. 11, 149-156 (2005).
  11. H. Bukkems, New approaches to widely tunable semiconductor lasers Ph.D. dissertation Technische Universiteit EindhovenEindhovenThe Netherlands (2006).
  12. J. H. den Besten, R. G. Broeke, M. van Geemert, J. J. M. Binsma, F. Heinrichsdorff, T. van Dongen, E. A. J. M. Bente, X. J. M. Leijtens, M. K. Smit, "An integrated coupled-cavity 16-wavelength digitally tunable laser," IEEE Photon. Technol. Lett. 14, 1653-1655 (2002) (with correction: vol. 15 p. 353, Feb. 2003).
  13. C. R. Doerr, C. H. Joyner, L. W. Stulz, "40-wavelength rapidly digitally tunable laser," IEEE Photon. Technol. Lett. 11, 1348-1350 (1999).
  14. M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Nötzel, M. K. Smit, "Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper," IEEE J. Quantum Electron. 44, 370-277 (2008).
  15. E. A. J. M. Bente, Y. Barbarin, J. H. den Besten, M. K. Smit, J. J. M. Binsma, "Wavelength selection in an integrated multiwavelength ring laser," IEEE J. Quantum Electron. 40, 1208-1216 (2004).
  16. J.-F. Vinchant, J. A. Cavaillès, M. Erman, P. Jarry, M. Renaud, "InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: Theory and experiment," J. Lightw. Technol. 10, 63-69 (1992).
  17. J. H. den Besten, Integration of multiwavelength lasers with fast electro-optical modulators Ph.D. dissertation Technische Universiteit EindhovenEindhovenThe Netherlands (2004).
  18. L. Zhang, J. Sinsky, D. van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, S. Chandrasekhar, "Low-voltage high-speed travelling wave InGaAsP-InP phase modulator," IEEE J. Photon. Technol. Lett. 17, 1831-1833 (2004).
  19. V. M. Kodach, J. Kalkman, D. J. Faber, T. G. van Leeuwen, "Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm," Biomed. Opt. Exp. 1, 176-185 (2010).
  20. L. Xu, Monolithic integrated reflective transceiver in indium phosphide Ph.D. dissertation Technische Universiteit EindhovenEindhovenThe Netherlands (2009).
  21. M. K. Smit, R. Baets, M. Wale, "InP-based photonic integration: Learning from CMOS," 35th Eur. Conf. Opt. Comm. ViennaAustria (2009).
  22. E. A. J. M. Bente, M. K. Smit, "Ultrafast InP optical integrated circuits," SPIE Proc. 6124 Optoelectron. Integr. Circuits VIII San JoseCA (2006).
  23. B. W. Tilma, M. S. Tahvili, J. Kotani, R. Nötzel, M. K. Smit, E. A. J. M. Bente, "Measurement and analysis of optical gain spectra in 1.6 to 1.8 $\mu$m InAs/InP (100) quantum-dot amplifiers," Opt. Quantum Electron. 41, 735-749 (2010).
  24. M. K. Smit, C. van Dam, "PHASAR-based WDM-devices: Principles, design and applications," IEEE J. Sel. Topics Quantum Electron. 2, 236-250 (1996).
  25. B. W. Tilma, E. A. J. M. Bente, X. J. M. Leijtens, R. N. Nötzel, M. K. Smit, "Design of an integrated electro-optically tunable filter for tunable laser purposes," Proc. 14th Eur. Conf. Int. Opt. (2008) pp. 181-184.
  26. F. Fiedler, A. Schlachetski, "Optical parameters of InP-based waveguides," Solid-State Electron. 30, 73-83 (1987).
  27. J. P. Weber, "Optimization of the carrier-induced effective index change in InGaSP waveguides application to tunable Bragg filters," IEEE J. Quantum Electron. 30, 1801-1816 (1994).
  28. H. Takahasi, I. Nishi, Y. Hibino, "10 GHz spacing optical frequency division multiplexer based on arrayed-waveguide grating," Electron. Lett. 28, 380-382 (1992).
  29. X. J. M. Leijtens, P. Le Lourec, M. K. Smit, "S-matrix oriented CAD-tool for simulating complex integrated optical circuits," IEEE J. Sel. Topics Quantum Electron. 2, 257-262 (1996).
  30. L. Xu, X. J. M. Leijtens, T. de Vries, Y. S. Oei, P. J. van Veldhoven, R. Nötzel, M. K. Smit, "Efficient deeply etched InP/InGaAsP phase shifters with low dark current," Proc. IEEE/LEOS Symp. Benelux Chapter 2007 (2007) pp. 115-118.
  31. J. J. M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R. G. Broeke, M. K. Smit, "MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss," Proc. IEEE/LEOS Symp. Benelux Chapter 2001 (2001) pp. 245-248.
  32. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, B. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, J. H. Wolter, "Lasing of wavelength-tunable (1.55 $\mu$m region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 073116-1-073116-3 (2006).
  33. TUeDACS TU/e Data Acquisition & Control System—AWG100 (2009.) www.tuedacs.nl.
  34. R. G. Walker, "Simple and accurate loss measurement technique for semiconductor optical waveguides," Electron. Lett. 21, 581-583 (1985).
  35. J. H. den Besten, M. P. Dessens, C. G. P. Herben, X. J. M. Leijtens, F. H. Groen, M. R. Leys, M. K. Smit, "Low-loss. Compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process," IEEE Photon. Technol. Lett. 14, 62-64 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited