OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2853–2860

Impairment-Aware Lightpath Routing and Regenerator Placement in Optical Transport Networks With Physical-Layer Heterogeneity

Gangxiang Shen, Yunfeng Shen, and Harshad P. Sardesai

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2853-2860 (2011)


View Full Text Article

Acrobat PDF (252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We develop a framework that supports impairment-aware lightpath routing and wavelength assignments in optical transport networks. Different from most existing studies, we consider a more generic optical transport network with physical-layer heterogeneity, including different fiber types, variable amplification span distances and attenuation coefficients. In addition, rather than a single amplifier type as in most of the existing studies, we consider multiple amplifier types for different amplification situations. Owing to the high cost of OEO regeneration, the total number of required regenerators is considered as the major objective for optimization. A signal-quality-aware routing algorithm is developed to find routes that are expected to require the fewest regenerators. The first-fit wavelength assignment algorithm is extended to assign wavelength(s) for lightpaths after placement of some regenerators which can freely function as wavelength converters. Simulation studies indicate that the proposed algorithm can significantly reduce the required number of regenerators compared to the simple shortest-path routing algorithm. Moreover, it is found that the signal-quality-aware algorithm shows stronger benefits when a network demonstrates higher physical-layer heterogeneity such as different fiber types and non-uniform span losses. The signal-quality-aware algorithm also demonstrates better performance when a network has a higher average nodal degree. Finally, the results indicate that multiple amplifier options are important for cost-effective optical transport network design. For a network with high physical-layer heterogeneity, multiple amplifier options can significantly reduce the required number of regenerators (up to 50%) over a single amplifier option.

© 2011 IEEE

Citation
Gangxiang Shen, Yunfeng Shen, and Harshad P. Sardesai, "Impairment-Aware Lightpath Routing and Regenerator Placement in Optical Transport Networks With Physical-Layer Heterogeneity," J. Lightwave Technol. 29, 2853-2860 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-18-2853

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited