OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 19 — Oct. 1, 2011
  • pp: 2985–2991

Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing

Ai Zhou, Guangping Li, Yanhui Zhang, Yuzhuo Wang, Chunying Guan, Jun Yang, and Libo Yuan

Journal of Lightwave Technology, Vol. 29, Issue 19, pp. 2985-2991 (2011)

View Full Text Article

Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


An asymmetrical twin-core fiber based Michelson interferometer is reported as a refractive index sensor. One core of the twin-core fiber locates at the fiber center and the other core is 26 μm away from the central core. Part of the cladding of the twin-core fiber over a small length is removed by chemical etching to make the effective refractive index of the fundamental mode of the side core is sensitive to the ambient refractive index. Therefore, the interference spectrum between the central core and the side core shifts with the variation of the ambient refractive index. The sensitivity of such a Michelson interferometer is ~270 nm/RIU in the range of 1.34–1.38.

© 2011 IEEE

Ai Zhou, Guangping Li, Yanhui Zhang, Yuzhuo Wang, Chunying Guan, Jun Yang, and Libo Yuan, "Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing," J. Lightwave Technol. 29, 2985-2991 (2011)

Sort:  Year  |  Journal  |  Reset


  1. G. J. Veldhuis, P. V. Lambeck, "Highly-sensitive passive integrated optical spiral-shaped waveguide refractometer," Appl. Phys. Lett. 71, 2895-2897 (1997).
  2. G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, "Integrated optical refractometer based on waveguide bend loss," J. Lightw. Technol. 17, 857-864 (1999).
  3. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, "Fiber optical Bragg grating refractometer," Fiber Integr. Opt. 17, 51-62 (1998).
  4. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, J. Wojcik, "Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber," Opt. Lett. 34, 76-78 (2009).
  5. I. Del Villar, I. R. Matias, F. J. Arregui, "Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials," Opt. Lett. 30, 2363-2365 (2005).
  6. D. W. Kim, F. Shen, X. Chen, A. Wang, "Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor," Opt. Lett. 30, 3000-3002 (2005).
  7. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, G. Farrell, "Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure," Opt. Lett. 36, 2197-2199 (2011).
  8. J. Villatoro, D. Monzón-Hernández, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
  9. Q. Wu, G. Farrell, "All-fiber multimode-interference-based refractometer sensor: Proposal and design," Opt, Lett. 31, 317-319 (2006).
  10. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, R. Neal, "A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
  11. P. L. Swart, "Long-period grating Michelson refractometric sensor," Meas. Sci. Technol. 15, 1576-1580 (2004).
  12. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, S. He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
  13. D. W. Kim, Y. Zhang, K. L. Cooper, A. Wang, "In-fiber reflection mode interferometer based on a long period grating fore external refractive-index measurement," Appl. Opt. 44, 5368-5373 (2005).
  14. P. Lu, L. Men, K. Sooley, Q. Chena, "Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl. Phys. Lett. 94, 131110 (2009).
  15. Z. Tian, S. S.-H. Yam, H.-P. Loock, "Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber," Opt. Lett. 33, 1105-1107 (2008).
  16. Z. Tian, S. S.-H. Yam, "In-line single-mode optical fiber interferometric refractive index sensor," J. Lightw. Technol. 27, 2296-2306 (2009).
  17. Y. Li, L. Chen, E. Harris, X. Bao, "Double-pass in-line fiber taper Mach–Zehnder interferometer sensor," IEEE Photon. Technol. Lett. 22, 1750-1752 (2010).
  18. R. Jha, J. Villatoro, G. Badenes, V. Pruneri, "Refractometry based on a photonic crystal fiber interferometer," Opt. Lett. 34, 617-619 (2009).
  19. R. Jha, J. Villatoro, G. Badenes, "Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing," Appl. Phys. Lett. 93, 191106 (2008).
  20. Z. Ran, Y. Rao, W. Liu, X. Liao, K. Chiang, "Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index," Opt. Exp. 16, 2252-2263 (2008).
  21. T. Wei, Y. Han, Y. Li, H. Tsai, H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement," Opt. Exp. 16, 5764-5769 (2008).
  22. Z. Ran, Y. Rao, J. Zhang, Z. Liu, B. Xu, "A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip," J. Lightw. Technol. 27, 5426-5429 (2009).
  23. Y. Wang, M. Yang, D. N. Wang, S. Liu, P. Lu, "Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity," J. Opt. Soc. Amer. B 27, 370-374 (2010).
  24. J. W. Arkwright, S. J. Hewlett, G. R. Atkins, B. Wu, "High-isolation demultiplexing in bend-tuned twin-core fiber," J. Lightw. Technol. 14, 1740-1745 (1996).
  25. L. Yuan, J. Yang, Z. Liu, "A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer," IEEE Sens. J. 8, 1114-1117 (2008).
  26. S. Feng, H. Li, O. Xu, S. Lu, S. Jian, "Compact in-fiber Mach–Zehnder interferometer using a twin-core fiber," Proc. SPIE (2009) pp. 76301R.
  27. O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, K. Schuster, "All fiber Mach–Zehnder interferometer based on suspended twin-core fiber," IEEE Photon. Technol. Lett. 22, 1300-1302 (2010).
  28. F. Peng, J. Yang, X. Li, Y. Yuan, B. Wu, A. Zhou, L. Yuan, "In-fiber integrated accelerometer," Opt. Lett. 36, 2056-2058 (2011).
  29. L. Yuan, Z. Liu, J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
  30. A. Alphones, G. S. Sanyal, "Propagation characteristics of eccentric core fibers using point-matching method," Proc. IEEE 74, 1456-1459 (1986).
  31. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, "Holey fiber analysis through the finite-element method," IEEE. Photon. Technol. Lett. 14, 1530-1532 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited