OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 22 — Nov. 15, 2011
  • pp: 3461–3469

1.06 $\mu$m Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient

Jindan Shi, Xian Feng, Peter Horak, Kangkang Chen, Peh Siong Teh, Shaif-Ul Alam, Wei H. Loh, David J. Richardson, and Morten Ibsen

Journal of Lightwave Technology, Vol. 29, Issue 22, pp. 3461-3469 (2011)

View Full Text Article

Acrobat PDF (1874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We investigate efficient broadband infrared supercontinuum generation in meter-length single-mode small-core tellurite holey fiber. The fiber is pumped by 1.06 μm picosecond pulses in the normal dispersion region. The high Raman gain coefficient and the broad Raman gain bands of the tellurite glass are exploited to generate a cascade of Raman Stokes orders, which initiate in the highly normal dispersion region and quickly extend to longer wavelengths across the zero dispersion wavelength with increasing pump power. A broadband supercontinuum from 1.06 μm to beyond 1.70 μm is generated. The effects of the pump power and of the fiber length on the spectrum and on the power conversion efficiency from the pump to the supercontinuum are discussed. Power scaling indicates that using this viable normal dispersion pumping scheme, 9.5 W average output power of infrared supercontinuum and more than 60% conversion efficiency can be obtained from a 1 m long tellurite fiber with a large mode area of 500 μm2.

© 2011 IEEE

Jindan Shi, Xian Feng, Peter Horak, Kangkang Chen, Peh Siong Teh, Shaif-Ul Alam, Wei H. Loh, David J. Richardson, and Morten Ibsen, "1.06 $\mu$m Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient," J. Lightwave Technol. 29, 3461-3469 (2011)

Sort:  Year  |  Journal  |  Reset


  1. The Supercontinuum Laser Source (Springer-Verlag, 2005).
  2. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2000).
  5. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, T. Cardinal, "Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica," Opt. Lett. 28, 1126-1128 (2003).
  6. L. L. Chase, E. W. V. Stryland, Handbook of Laser Science and Technology Supplement 2: Optical Materials .
  7. G. Ghosh, "Sellmeier coefficients and chromatic dispersions for some tellurite glasses," J. Amer. Ceram. Soc. 78, 2828-2830 (1995).
  8. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, Y. Ohishi, "Tellurite microstructure fibers with small hexagonal core for supercontinuum generation," Opt. Exp. 17, 12174-12182 (2009).
  9. J. S. Wang, E. M. Vogel, E. Snitzer, "Tellurite glass: A new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
  10. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, D. J. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835-837 (2005).
  11. R. Shuker, R. W. Gammon, "Raman scattering selection rule breaking and density of states in amorphous materials," Phys. Rev. Lett. 25, 222-225 (1970).
  12. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, M. F. Churbanov, "Raman band intensities of tellurite glasses," Opt. Lett. 30, 1156-1158 (2005).
  13. R. H. Stolen, E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
  14. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, W. J. Mosby, "The relative Raman cross sections of vitreous SiO$_{2}$, GeO$_{2}$, B$_{2}$ O$_{3}$, and P$_{2}$ O$_{5}$," Appl. Phys. Lett. 32, 34-36 (1978).
  15. C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi, V. Rodriguez, "Quantifying Raman gain coefficients in tellurite glasses," J. Non-Cryst. Solids 345/346, 396-401 (2004).
  16. K. Chen, J. H. V. Price, S. Alam, J. R. Hayes, D. Lin, A. Malinowski, D. J. Richardson, "Polarisation maintaining 100 W Yb-fiber MOPA producing $\mu$J pulses tunable in duration from 1 to 21 ps," Opt. Exp. 18, 14385-14394 (2010).
  17. K. Chen, S. Alam, P. Horak, C. A. Codemard, A. Malinowski, D. J. Richardson, "Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm," Opt. Exp. 35, 2433-2435 (2005).
  18. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  19. A. K. Abeeluck, C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005).
  20. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, D. J. Richardson, "Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications," Opt. Exp. 16, 3651-3656 (2008).
  21. T. Delmonte, M. A. Watson, E. J. O'Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. H. Loh, D. J. Richardson, D. P. Hand, "Generation of midIR continuum using tellurite microstructured fiber," presented at the Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf. Long BeachCA (2006) Paper CTuA4.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited