OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 22 — Nov. 15, 2011
  • pp: 3476–3482

An Exact Probability Density Function for Intensity-Based Output Noise Propagating Through a Fiber Optic Sensor Demodulation Process

Michael D. Todd

Journal of Lightwave Technology, Vol. 29, Issue 22, pp. 3476-3482 (2011)


View Full Text Article

Acrobat PDF (2188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Fiber optic interferometry is a common architecture in many optical sensing strategies and typically requires a demodulation scheme for phase (signal) extraction. For sensing applications, signal-to-noise and other statistical metrics are of great importance in characterizing system performance. In the context of a specific demodulation algorithm employing three-channel inputs, we analytically compute a probability density function of the demodulator output noise, given an arbitrary distribution of input intensity noise and arbitrary noise correlation among the three channels. We compare the analytical formulations with previously validated simulation data from a fiber Bragg grating sensor system, and we find excellent agreement within the specific example of Gaussian input noise.

© 2011 IEEE

Citation
Michael D. Todd, "An Exact Probability Density Function for Intensity-Based Output Noise Propagating Through a Fiber Optic Sensor Demodulation Process," J. Lightwave Technol. 29, 3476-3482 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-22-3476


Sort:  Year  |  Journal  |  Reset

References

  1. Fiber Optic Smart Structures (Wiley Interscience, 1995).
  2. A. Othonos, K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  3. Optical Fiber Sensor Technology-Volume 3: Applications and Systems (Kluwer Academic, 1999).
  4. Fiber Optic Sensors (Marcel Dekker, 2002).
  5. Handbook of Optical Fiber Sensing Technology (Wiley, 2002).
  6. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, "Homodyne demodulation scheme using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
  7. J. H. Cole, B. A. Danver, J. A. Bucaro, "Synthetic heterodyne interferometric demodulation," IEEE J. Quantum Electron. QE-18, 694-697 (1982).
  8. J. Proakis, M. Salehi, Communication Systems Engineering (Prentice-Hall, 1994).
  9. C. E. M. Strauss, "Synthetic-array heterodyne detection: A single-element detector acts as an array," Opt. Lett. 19, 1609-1611 (1994).
  10. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, 2001).
  11. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. Rashleigh, R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626-666 (1982).
  12. O. Sasaki, H. Okazaki, "Analysis of measurement accuracy in sinusoidal phase modulating interferometry," Appl. Opt. 25, 3152-3158 (1986).
  13. A. J. Stevenson, M. B. Gray, H.-A. Bachor, D. E. McClelland, "Quantum-noise-limited interferometer phase measurement," Appl. Opt. 32, 3481-3493 (1993).
  14. A. Arie, M. Tur, E. Goldstein, "Probability-density function of noise at the output of a two-beam interferometer," J. Opt. Soc. Am. A 8, 1936-1942 (1991).
  15. K.-P. Ho, J. M. Kahn, "Exact probability-density function for phase-measurement interferometry," J. Opt. Soc. Am. A 12, 1984-1989 (1995).
  16. G. Nicholson, "Probability of error for optical heterodyne DPSK system with quantum phase noise," Electron. Lett. 20, 1005-1007 (1984).
  17. K.-P. Ho, "Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise," IEEE J. Sel. Topics Quantum Electron. 10, 421-427 (2004).
  18. X. Zhang, Z. Qu, G. Yang, "Probability density function of noise statistics for optically pre-amplified DPSK receivers with optical Mach-Zehnder interferometer demodulation," Opt. Commun. 28, 177-183 (2006).
  19. J. Minkoff, Signal Processing Fundamentals and Applications for Communications and Sensing Systems (Artech House, 2002).
  20. M. D. Todd, "Output noise statistical profile for digital phase demodulation systems with intensity-induced input noise," J. Lightw. Technol. 25, 747-756 (2007).
  21. M. D. Todd, "On the probability structure of output noise from a digital phase demodulation system subject to biased intensity-based input noise," J. Lightw. Technol. 26, 2291-2300 (2008).
  22. G. A. Johnson, M. D. Todd, B. L. Althouse, C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with a 3x3 coupler and a scanning filter," J. Lightw. Technol. 18, 1105-1105 (2000).
  23. M. D. Todd, G. A. Johnson, B. L. Althouse, "A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach-Zehnder interferometer, and a 3x3 coupler," Measure. Sci. Technol. 12, 771-777 (2001).
  24. M. D. Todd, M. Seaver, F. Bucholtz, "Improved, operationally-passive interferometric demodulation method using a 3x3 coupler," Electron. Lett. 38, 784-786 (2002).
  25. F. Schleip, R. Hereth, G. Schiffner, "Phase sensitive investigations of 3x3 single mode fibre directional couplers," Electron. Lett. 29, 68-70 (1993).
  26. M. D. Todd, J. M. Nichols, S. T. Trickey, M. Seaver, "Analysis of accuracy error and distortion in an operationally-passive interferometric demodulation technique," Proc. SPIE Smart Structures/NDE 6167 (2006).
  27. J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited