## First-Principles Full-Vectorial Eigenfrequency Computations for Axially Symmetric Resonators

Journal of Lightwave Technology, Vol. 29, Issue 3, pp. 253-259 (2011)

Acrobat PDF (574 KB)

### Abstract

Starting from the time-harmonic Maxwell's equations in cylindrical coordinates, we derive and solve the finite-difference (FD) eigenvalue equations for determining vector modes of axially symmetric resonator structures such as disks, rings, spheres and toroids. Contrary to the most existing implementations, our FD scheme is readily adapted for both eigenmode and eigenfrequency calculations. An excellent match of the FD solutions with the analytically calculated mode indices of a microsphere resonator provides a numerical confirmation of the mode-solver accuracy. The comparison of the presented FD technique with the finite-element method highlights the relative strengths of both techniques and advances the FD mode-solver as an important tool for cylindrical resonator design.

© 2010 IEEE

**Citation**

Rohan D. Kekatpure, "First-Principles Full-Vectorial Eigenfrequency Computations for Axially Symmetric
Resonators," J. Lightwave Technol. **29**, 253-259 (2011)

http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-3-253

Sort: Year | Journal | Reset

### References

- B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol. 15, 998-1005 (1997).
- V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
- Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
- T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802 (2006).
- S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
- A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
- P. DelH´aye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007).
- M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, D. J. Moss, "Low power four wave mixing in an integrated, micro-ring resonator with $Q = 1.2$ million," Opt. Exp. 17, 14 098-14 103 (2009).
- K. Srinivasan, O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862-865 (2007).
- K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Exp. 14, 1094-1105 (2006).
- R. D. Kekatpure, M. L. Brongersma, "Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity," Nano Lett. 8, 3787 (2008).
- R. D. Kekatpure, M. L. Brongersma, "Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators," Phys. Rev. A 78, 023829 (2008).
- S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, H. J. Kimble, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
- S. M. Spillane, T. J. Kippenberg, K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-623 (2002).
- P. T. Rakich, M. A. Popovic, M. Soljacic, E. P. Ippen, "Trapping, corralling and spectral bonding of optical resonances through optically induced potentials," Nat. Photon. 1, 658-665 (2007) 11.
- Photon Design, Fimmwave http://www.photond.com/products/fimmwave.htm.
- (2007) Rsoft Design Group, Femsim http://www.rsoftdesign.com.
- W. Lui, C.-L. Xu, T. Hirono, K. Yokoyama, W.-P. Huang, "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightw. Technol. 16, 910-914 (1998).
- N.-N. Feng, G.-R. Zhou, C. Xu, W.-P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," J. Lightw. Technol. 20, 1976-1980 (2002).
- J. Xiao, H. Ni, X. Sun, "Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems," Opt. Lett. 33, 1848-1850 (2008).
- M. Popovic, Theory and design of high-index-contrast microphotonic circuits Ph.D. dissertation Massachusetts Institute of TechnologyCambridge (2008).
- W. C. Chew, "Electromagnetic theory on a lattice," J. Appl. Phys. 75, 4843-4850 (1994).
- S. F. Preble, Q. Xu, M. Lipson, "Changing the colour of light in a silicon resonator," Nature Photon. 1, 293-296 (2007).
- F. Teixeira, W. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microw. Guided Wave Lett. 7, 285-287 (1997).
- F. Teixeira, W. Chew, "Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates," IEEE Microw. Guided Wave Lett. 7, 371-373 (1997).
- B. Little, J.-P. Laine, H. Haus, "Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators," J. Lightw. Technol. 17, 704-715 (1999).
- J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
- (2007) Comsol Multiphysics v. 3.3a http://www.comsol.com.
- M. Oxborrow, "Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators," IEEE Trans. Microw. Theory Techn. 55, 1209-1218 (2007).

## Cited By |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.