Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 3,
  • pp. 291-297
  • (2011)

Analysis of an Optical Fiber Coherent System Immune to Polarization Fluctuations Using Adaptive Detection

Not Accessible

Your library or personal account may give you access

Abstract

The light polarization fluctuations strongly affect the performance of coherent optical communication systems due to the fact that to recover the information contained in the phase of the signal beam, it is necessary to have interference with a reference beam. In the present work, a simple system based on the use of an optical fiber interferometer and two adaptive photodetectors, which is immune to polarization fluctuations provoked by the fiber in both signal and reference beams, is theoretically analyzed. In such study, two models of the optical fiber, the first with just one linear retarder and another more complex with an additional circular retarder, were used. The results for linearly polarized light in the Y axis direction showed that digital signal transmission received by the adaptive system is immune to polarization fluctuations (in both signal and reference beams) in a wide range of ellipticity and rotation variations. In particular, if TTL logic is used, a maximum fluctuation of 60% with respect to the maximum of the output signal would be allowed to transmit the information correctly, in this case, ellipticity and rotation variations could be up to ±30°.

© 2010 IEEE

PDF Article
More Like This
Coherent detection in optical fiber systems

Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, and Joseph M. Kahn
Opt. Express 16(2) 753-791 (2008)

Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components

B. Hyle Park, Mark C. Pierce, Barry Cense, and Johannes F. de Boer
Opt. Lett. 29(21) 2512-2514 (2004)

Polarization coherent optical communications with adaptive polarization control over atmospheric turbulence

Shengli Ding, Ruijie Li, Yufei Luo, and Anhong Dang
J. Opt. Soc. Am. A 35(7) 1204-1211 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved