OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 4 — Feb. 15, 2011
  • pp: 463–474

A 135-km 8192-Split Carrier Distributed DWDM-TDMA PON With 2$\,\times\,$32$\,\times\,$10 Gb/s Capacity

Peter Ossieur, Cleitus Antony, Aisling M. Clarke, Alan Naughton, Heinz-George Krimmel, Y. Chang, Colin Ford, Anna Borghesani, David G. Moodie, Alistair Poustie, Richard Wyatt, Bob Harmon, Ian Lealman, Graeme Maxwell, Dave Rogers, David W. Smith, Derek Nesset, Russell P. Davey, and Paul D. Townsend

Journal of Lightwave Technology, Vol. 29, Issue 4, pp. 463-474 (2011)

View Full Text Article

Acrobat PDF (1847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present a hybrid dense wavelength-division-multiplexed time-division multiple access passive optical network (DWDM-TDMA PON) with record performance in terms of reach (135.1 km of which 124 km were field-installed fibers), number of supported optical network units (ONUs—8192) and capacity (symmetric 320 Gb/s). This was done using 32-, 50-GHz-spaced downstream wavelengths and another 32-, 50-GHz-spaced upstream wavelengths, each carrying 10 Gb/s traffic (256 ONUs per wavelength, upstream operated in burst mode). The 10 Gb/s downstream channels were based upon DFB lasers (arranged in a DWDM grid), whose outputs were modulated using a electro-absorption modulator (EAM). The downstream channels were terminated using avalanche photodiodes in the optical networks units (ONUs). Erbium-doped fiber amplifiers (EDFAs) provided the gain to overcome the large fiber and splitting losses. The 10 Gb/s upstream channels were based upon seed carriers (arranged in a DWDM grid) distributed from the service node towards the optical network units (ONUs) located in the user's premises. The ONUs boosted, modulated, and reflected these seed carriers back toward the service node using integrated 10 Gb/s reflective EAM-SOAs (EAM-semiconductor optical amplifier). This seed carrier distribution scheme offers the advantage that all wavelength referencing is done in the well-controlled environment of the service node. The bursty upstream channels were further supported by gain stabilized EDFAs and a 3R 10 Gb/s burst-mode receiver with electronic dispersion compensation. The demonstrated network concept allows integration of metro and optical access networks into a single all-optical system, which has potential for capital and operational expenditure savings for operators.

© 2010 IEEE

Peter Ossieur, Cleitus Antony, Aisling M. Clarke, Alan Naughton, Heinz-George Krimmel, Y. Chang, Colin Ford, Anna Borghesani, David G. Moodie, Alistair Poustie, Richard Wyatt, Bob Harmon, Ian Lealman, Graeme Maxwell, Dave Rogers, David W. Smith, Derek Nesset, Russell P. Davey, and Paul D. Townsend, "A 135-km 8192-Split Carrier Distributed DWDM-TDMA PON With 2$\,\times\,$32$\,\times\,$10 Gb/s Capacity," J. Lightwave Technol. 29, 463-474 (2011)

Sort:  Year  |  Journal  |  Reset


  1. ITU-T G.987.1"Ten gigabit-capable passive optical networks: Service requirements," (2010).
  2. ITU-T G.987.2"Ten gigabit-capable passive optical networks: Physical dependent layer specifications," (2010).
  3. IEEE P802.3av"10 Gb/s ethernet passive optical networks," (2009).
  4. S. Jain, F. Effenberger, A. Szabo, Z. Feng, A. Forcucci, W. Gui, Y. Luo, R. Mapes, Y. Zhang, V. O'Byrne, "World's first XG-PON field trial," Opt. Fiber Conf. San DiegoCA Postdeadline Paper PDPD6.
  5. J. Nakagawa, M. Noda, N. Suzuki, S. Yoshima, K. Nakura, M. Nogami, "First demonstration of 10G-EPON and GE-PON Co-existing system employing dual-rate burst-mode 3R transceiver," Opt. Fiber Conf. San DiegoCA Postdeadline Paper PDPD10.
  6. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, S.-H. Yang, "Long-reach passive optical networks," J. Lightw. Technol. 27, 273-291 (2009).
  7. ITU-T G.984.6"Gigabit-capable passive optical networks (GPON): Reach extension," (2008).
  8. J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, S. Rodrigues, "Next-generation PON—Part I: Technology roadmap and general requirements," IEEE Comm. Mag. 47, 50-57 (2009).
  9. J. Kani, N. Yoshimoto, "Next generation PONs: an operator's view," Eur. Conf. Optical Communication ViennaAustria (2009) Paper 5.7.4.
  10. P. D. Townsend, "Long reach passive optical networks," Proc. IEEE LEOS Annu. Meeting (2007) pp. 1-7.
  11. G. Talli, P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightw. Technol. 24, 2827-2834 (2006).
  12. A. Banerjee, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, "Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review [Invited]," J. Opt. Netw. 4, 737-758 (2005).
  13. K. Iwatsuki, J.-I. Kani, H. Suzuki, M. Fujiwara, "Access and metro networks based on WDM technologies," J. Lightw. Technol. 22, 2623-2630 (2004).
  14. G. Talli, P. D. Townsend, "Feasibility demonstration of 100 km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and 10 Gb/s," Eur. Conf. Optical Communication GlasgowU.K. (2005) Paper OFI1.
  15. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, D. W. Smith, "Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA," presented at the Eur. Conf. Optical Communication BrusselsBelgium (2008) Paper Th.2.F.1.
  16. P. J. Urban, E. G. C. Pluk, M. M. de Laat, F. M. Huijskens, G. D. Khoe, A. M. J. Koonen, H. de Waardt, "1.25-Gb/s transmission over an access network link with tunable OADM and a reflective SOA," IEEE Photon. Technol. Lett. 21, 380-382 (2009).
  17. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, S. Chi, "Signal remodulation high split ratio hybrid WDM-TDM PONs using RSOA-based ONUs," Electron. Lett. 45, 903-904 (2009).
  18. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lazaro, A. N. Birbas, J. Kikidis, J. Prat, I. Tomkos, "10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization," Opt. Exp. 17, 5008-5013 (2009).
  19. G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, R. Brenot, "High gain (30 dB) and high saturation power (11 dBm) RSOA devices as colorless ONU sources in long-reach hybrid WDM/TDM-PON architecture," IEEE Photon. Technol. Lett. 22, 191-193 (2010).
  20. R. D. Feldman, "Crosstalk and loss in wavelength division multiplexed systems employing spectral slicing," J. Lightw. Technol. 15, 1823-1831 (1997).
  21. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, Y. C. Chung, "Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating," IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).
  22. P. Healy, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1831 (1997).
  23. S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, Y. J. Oh, "Demonstration of WDM-PON with 50 GHz channel spacing employing spectrum-sliced reflective semiconductor optical amplifiers," Elec. Lett. 42, 1172-1173 (2006).
  24. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, K.-H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightw. Technol. 22, 2582-2591 (2004).
  25. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, C. Shim, "Hybrid WDM/TDM-PON with wavelength-selection-free transmitters," J. Lightw. Technol. 23, 187-195 (2005).
  26. L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, "Upstream traffic transmitter using injection-locked Fabry-Pérot laser diode as modulator for WDM access networks," Electron. Lett. 38, 43-45 (2002).
  27. D. W. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, A. Poustie, "Colorless 10 Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks," Eur. Conf. Optical Communication ViennaAustria (2009) Paper 8.6.3.
  28. D. W. Smith, "Reducing the optical component cost for future fiber access," Eur. Conf. Optical Communication ViennaAustria (2009) Paper 4.7.4.
  29. F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, L. G. Kazovsky, "SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture," J. Lightw. Technol. 22, 2557-2569 (2004).
  30. D. Nesset, "10 Gbit/s bidirectional transmission in 1024-way split, 110 km reach, PON system using commercial transceiver modules, super FEC and EDC," presented at the Eur. Conf. Optical Communication GlasgowU.K. (2005) Paper Tu1.3.1.
  31. C. Antony, "Upstream burst-mode operation of a 100 km reach, 16$\,\times\,$512 split hybrid DWDM-TDM PON using tuneable external cavity lasers at the ONU-side," Eur. Conf. Optical Communication ViennaAustria (2009) Paper 8.5.3.
  32. P. Ossieur, "A symmetric 320 Gb/s capable, 100 km extended reach hybrid DWDM-TDMA PON," presented at the Optical Fiber Conference San DiegoCA Paper NWB1.
  33. C. Antony, "Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124 km field-installed fibers," Optical Fiber Conference San DiegoCA Postdeadline paper PDPD8.
  34. H. G. Krimmel, T. Pfeiffer, B. Deppisch, L. Jentsch, "Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks," Eur. Conf. Optical Communication ViennaAustria (2009) Paper 9.5.3.
  35. G. Talli, "Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs," J. Opt. Netw. 6, 765-775 (2007).
  36. C. Antony, "High extinction switching of SOAs for in-band crosstalk reduction in PON," Electron. Lett. 44, 872-873 (2008).
  37. B. Baekelandt, C. Mélange, J. Bauwelinck, P. Ossieur, T. De Ridder, X. Z. Qiu, J. Vandewege, "OSNR penalty imposed by linear in-band crosstalk caused by interburst residual power in multipoint-to-point networks," IEEE Photon. Technol. Lett. 20, 587-589 (2008).
  38. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, M. Zirngibl, "An evaluation of architectures incorporating wavelength division multiplexing for broadband fiber access," J. Lightw. Technol. 16, 1546-1559 (1998).
  39. ITU-T G.984.2Gigabit-Capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) Layer Specification (2003).
  40. H. Song, B. Kim, B. Mukherjee, "Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON," IEEE J. Sel. Areas Commun. 27, 134-142 (2009).
  41. S. Pato, H. Silva, P. Monteiro, "Forward error correction in 10 Gbit/s ethernet passive optical networks,," J. Opt. Netw. 8, 84-94 (2009).
  42. Y. Yi, S. Verschuere, Z. Lou, P. Ossieur, J. Bauwelinck, X. Z. Qiu, J. Vandewege, "Simulations and experiments on the effective optical gain of FEC in a GPON uplink," IEEE Photon. Technol. Lett. 19, 82-84 (2007).
  43. M. C. Fischer, G. C. Gupta, L. L. Wang, K. Kojima, O. Mizuhara, V. Swaminathan, "FEC performance under optical power transient conditions," IEEE Photon. Technol. Lett. 15, 1654-1656 (2003).
  44. J. G. Proakis, M. Salehi, Digital Communications (McGraw Hill, 2008) pp. 475-476.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited