OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 4 — Feb. 15, 2011
  • pp: 499–510

Semiconductor Quantum Dot Lasers: A Tutorial

James J. Coleman, Jonathan D. Young, and Akash Garg

Journal of Lightwave Technology, Vol. 29, Issue 4, pp. 499-510 (2011)

View Full Text Article

Acrobat PDF (1817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Semiconductor quantum dot lasers have been extensively studied for applications in future lightwave telecommunications systems. This paper summarizes a tutorial that was presented at the Optical Fiber Communication (OFC) 2010. The motivation for quantum dots in lasers is outlined, and the desirable effects of three dimensional quantum confinement are described. Methods for forming self-assembled quantum dots and the resultant laser characteristics are presented. The formation of patterned quantum dot lasers and the results of this type of quantum dot laser are outlined. Finally, a novel inverted quantum dot structure or nanopore laser containing 3-D quantization formed from an engineered periodicity is introduced.

© 2010 IEEE

James J. Coleman, Jonathan D. Young, and Akash Garg, "Semiconductor Quantum Dot Lasers: A Tutorial," J. Lightwave Technol. 29, 499-510 (2011)

Sort:  Year  |  Journal  |  Reset


  1. R. Dingle, W. Wiegmann, C. H. Henry, "Quantum states of confined carriers in very thin Al$_{\rm x}$Ga$_{1 - {\rm x}}$ As-GaAs-Al$_{\rm x}$Ga$_{1 - {\rm x}}$As heterostructures," Phys. Rev. Lett. 33, 827-30 (1974).
  2. J. P. Van der Ziel, R. Dingle, R. C. Miller, W. Wiegmann, W. A. Nordland, Jr."Laser oscillation from quantum states in very thin GaAs-Al$_{0.2}$Ga$_{0.8}$As multilayer structures," Appl. Phys. Lett. 26, 463-465 (1975).
  3. R. D. Dupuis, P. D. Dapkus, R. Chin, N. Holonyak, Jr.S. W. Kirchoefer, "Continuous 300$^{\circ}$K laser operation of single-quantum-well Al$_{\rm x}$Ga$_{1 - {\rm x}}$As-GaAs heterostructure diodes grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 34, 265-267 (1979).
  4. J. J. Coleman, "Semiconductor quantum dot devices," Proc. Opt. Fiber Commun. Conf. 2010 pp. 22.
  5. Y. Arakawa, H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
  6. M. Asada, Y. Miyamoto, Y. Suematsu, "Gain and the threshold of 3-dimensional quantum-box lasers," IEEE J. Quantum Electron. QE-22, 1915-1921 (1986).
  7. E. Bauer, "Phaenomenologische Theorie der Kristallabscheidung an Oberflaechen I," Zeitschrift f$\ddot{\upsilon}$r Kristallographie 110, 372-394 (1958).
  8. D. Leonard, K. Pond, P. M. Petroff, "Critical layer thickness for self-assembled InAs islands on GaAs," Phys. Rev. B 50, 11687-11692 (1994).
  9. T. S. Yeoh, C. P. Liu, R. B. Swint, A. E. Huber, S. D. Roh, C. Y. Woo, K. E. Lee, J. J. Coleman, "Epitaxy of InAs quantum dots on self-organized two-dimensional InAs islands by atmospheric pressure metalorganic chemical vapor deposition," Appl. Phys. Lett. 79, 221-223 (2001).
  10. P. M. Petroff, S. P. Denbaars, "MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures," Superlattices Microstruct. 15, 15-21 (1994).
  11. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, J. Heydenreich, "Low threshold, large to injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
  12. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop'ev, S. V. Zaitsev, N. Y. Gordeev, Z. I. Alferov, A. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, "Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth," Phys. Rev. B 54, 8743-8750 (1996).
  13. T. Walther, A. G. Cullis, D. J. Norris, M. Hopkinson, "Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs," Phys. Rev. Lett. 86, 2381-2384 (2001).
  14. A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, M. Hopkinson, "Stranski-Krastanow transition and epitaxial island growth," Phys. Rev. B 66, 81305-81401 (2002).
  15. R. Murray, D. Childs, S. Malik, P. Siverns, C. Roberts, J. M. Hartmann, P. Stavrinou, "1.3 $\mu$m room temperature emission from InAs/GaAs self-assembled quantum dots," Jpn. J. Appl. Phys. 38, 528-30 (1999).
  16. J. Tatebayashi, M. Nishioka, Y. Arakawa, "Over 1.5 $\mu$m light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001).
  17. A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, E. Kapon, "Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics," Small 6, 1268-1272 (2010).
  18. L. O. Mereni, V. Dimastrodonato, R. J. Young, E. Pelucchi, "Pyramidal quantum dots: High uniformity and narrow excitonic emission," Superlattices Microstruct. 47, 78-82 (2010).
  19. J. Bloch, J. Shah, L. N. Pfeiffer, K. W. West, S. N. G. Chu, "Optical properties of multiple layers of self-organized InAs quantum dots emitting at 1.3 $\mu$m," Appl. Phys. Lett. 77, 2545-2547 (2000).
  20. N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, D. L. Huffaker, "Effect of strain-compensation in stacked 1.3 $\mu$m InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 85, 3050-3052 (2004).
  21. A. Stintz, G. T. Liu, H. Li, L. F. Lester, K. J. Malloy, "Low-threshold current density 1.3 $\mu$m InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
  22. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kim, T. B. Norris, "Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 39, 952-962 (2003).
  23. L. V. Asryan, S. Luryi, "Tunneling-injection quantum-dot laser: Ultrahigh temperature stability," IEEE J. Quantum Electron. 37, 905-910 (2001).
  24. Y. Horikoshi, Y. Furukawa, "Temperature sensitive threshold current of Ingaasp-Inp double heterostructure lasers," Jpn. J. Appl. Phys. 18, 809-815 (1979).
  25. N. K. Dutta, R. J. Nelson, P. A. Barnes, "Temperature-dependence of threshold and electrical characteristics of Ingaasp-Inp Dh lasers," Electron. Lett. 16, 653-654 (1980).
  26. N. K. Dutta, R. J. Nelson, "Gain measurements in 1.3-Mum Ingaasp-Inp double heterostructure lasers," IEEE J. Quantum Electron. QE-18, 44-49 (1982).
  27. C. H. Henry, "Theory of the linewidth of semiconductor-lasers," IEEE J. Quantum Electron. QE-18, 259-264 (1982).
  28. C. H. Henry, "Theory of the phase noise and power spectrum of a single-mode injection-laser," IEEE J. Quantum Electron. QE-19, 1391-1397 (1983).
  29. C. H. Henry, "Phase noise in semiconductor-lasers," J. Lightw. Technol. LT-4, 298-311 (1986).
  30. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, "Direct frequency-modulation in AlGaAs semiconductor-lasers," IEEE J. Quantum Electron. QE-18, 582-95 (1982).
  31. L. Hafskjaer, A. S. Sudbo, "Modeling of the frequency-modulation response of semiconductor diode-lasers," IEEE J. Quantum Electron. 24, 625-34 (1988).
  32. S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, N. N. Ledentsov, "The role of Auger recombination in the temperature-dependent output characteristics $({\rm T}0 =\infty)$ of p-doped 1.3 $\mu$m quantum dot lasers," Appl. Phys. Lett. 85, 5164-5166 (2004).
  33. P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, K. J. Malloy, "Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers," IEEE J. Sel. Topics Quantum Electron. 7, 135-142 (2001).
  34. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, A. S. Skolnick, "1.3 $\mu$m InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density," Electron. Lett. 40, 1412-1413 (2004).
  35. X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, "Efficient high-temperature CW lasing operation of oxide-confined long-wavelength InAs quantum dot lasers," Electron. Lett. 36, 41-42 (2000).
  36. Z. Mi, P. Bhattacharya, S. Fathpour, "High-speed 1.3 $\mu$m tunnel injection quantum-dot lasers," Appl. Phys. Lett. 86, 153109-153111 (2005).
  37. S. M. Kim, Y. Wang, M. Keever, J. S. Harris, "High-frequency modulation characteristics of 1.3-$\mu$m InGaAs quantum dot lasers," IEEE Photon. Technol. Lett. 16, 377-379 (2004).
  38. S. Melnik, G. Huyet, A. Uskov, "The linewidth enhancement factor $\alpha$ of quantum dot semiconductor lasers," Opt. Exp. 14, 2950-2955 (2006).
  39. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. Poole, P. Barrios, D. Poitras, T. J. Rotter, Y. Chi, A. Stintz, K. J. Malloy, P. W. E. Smith, S. J. Aitchison, "Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 $\mu$m," J. Lightw. Technol. 26, 1498-1509 (2008).
  40. E. Homeyer, R. Piron, F. Grillot, O. Dehaese, K. Tavernier, E. Mace, J. Even, A. Le Corre, S. Loualiche, "Demonstration of a low threshold current in 1.54 $\mu$m InAs/InP(311)B quantum dot laser with reduced quantum dot stacks," Jpn. J. Appl. Phys. 46, 6903-6905 (2007).
  41. Z. Mi, C. Wu, J. Yang, P. Bhattacharya, "Molecular beam epitaxial growth and characteristics of 1.52 $\mu$m metamorphic InAs quantum dot lasers on GaAs," J. Vac. Sci. Technol., B 26, 1153-1156 (2008).
  42. A. Martinez, K. Merghem, S. Bouchoule, G. Moreau, A. Ramdane, J. G. Provost, F. Alexandre, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, "Dynamic properties of InAs/InP (311)B quantum dot fabry-perot lasers emitting at 1.52 $\mu$m," Appl. Phys. Lett. 93, 021101-021103 (2008).
  43. H. Lee, J. A. Johnson, J. S. Speck, P. M. Petroff, "Controlled ordering and positioning of InAs self-assembled quantum dots," J. Vac. Sci. Technol., B 18, 2193-2196 (2000).
  44. I. L. Drichko, A. M. Diakonov, V. I. Kozub, I. Y. Smirnov, Y. M. Galperin, A. I. Yakimov, A. I. Nikiforov, "AC-hopping conductance of self-organized Ge/Si quantum dot arrays," Physica E 26, 450-454 (2005).
  45. M. Schramboeck, W. Schrenk, T. Roch, A. M. Andrews, M. Austerer, G. Strasser, "Self organized InAs quantum dots grown on patterned GaAs substrates," Microelectron. Eng. 83, 1573-1576 (2006).
  46. R. K. Kupka, Y. Chen, R. Planel, H. Launois, "Fabrication of quantum wires and dots by X-ray-lithography and Ga+ implantation enhanced intermixing," Microelectron. Eng. 27, 311-316 (1995).
  47. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, E. Kapon, "Polarization-entangled photons produced with high-symmetry site-controlled quantum dots," Nat. Photon. 4, 302-306 (2010).
  48. V. C. Elarde, T. S. Yeoh, R. Rangarajan, J. J. Coleman, "Patterned InGaAs quantum dots by selective area MOCVD," Proc. 31st Int. Symp. Compound Semicond. (2004) pp. 353.
  49. V. B. Verma, J. J. Coleman, "High density patterned quantum dot arrays fabricated by electron beam lithography and wet chemical etching," Appl. Phys. Lett. 93, 111117-1-111117-3 (2008).
  50. J. Gierak, E. Bourhis, R. Jede, L. Bruchhaus, B. Beaumont, P. Gibart, "FIB technology applied to the improvement of the crystal quality of GaN and to the fabrication of organised arrays of quantum dots," Microelectron. Eng. 73–74, 610-614 (2004).
  51. C. C. Cheng, K. Meneou, K. Y. Cheng, "High optical quality InAs site-controlled quantum dots grown on soft photocurable nanoimprint lithography patterned GaAs substrates," Appl. Phys. Lett. 95, 173108-1-173108-3 (2009).
  52. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Nanoimprint lithography," J. Vac. Sci. Technol., B 14, 4129-4133 (1996).
  53. D. Morecroft, J. K. W. Yang, S. Schuster, K. K. Berggren, Q. F. Xia, W. Wu, R. S. Williams, "Sub-15 nm nanoimprint molds and pattern transfer," J. Vac. Sci. Technol., B 27, 2837-2840 (2009).
  54. S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol., B 15, 2897-2904 (1997).
  55. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, "Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography," Appl. Phys. Lett. 76, 1689-1691 (2000).
  56. T. F. Kuech, L. J. Mawst, "Nanofabrication of III-V semiconductors employing diblock copolymer lithography," J. Phys. D 43, 183001-183018 (2010).
  57. T. M. Cockerill, D. V. Forbes, H. Han, B. A. Turkot, J. A. Dantzig, I. M. Robertson, J. J. Coleman, "Wavelength tuning in strained layer InGaAs-GaAs-AlGaAs quantum well lasers by selective-area MOCVD," J. Electron. Mater. 23, 115-119 (1994).
  58. K. Kumakura, K. Nakakoshi, M. Kishida, J. Motohisa, T. Fukui, H. Hasegawa, "Dynamics of selective metalorganic vapor phase epitaxy growth for GaAs/AlGaAs micro-pyramids," J. Cryst. Growth 145, 308-313 (1994).
  59. X. Li, A. M. Jones, S. D. Roh, D. A. Turnbull, S. G. Bishop, J. J. Coleman, "Characteristics of GaN stripes grown by selective-area metalorganic chemical vapor deposition," J. Electron. Mater. 26, 306-310 (1997).
  60. L. Seung-Chang, K. J. Malloy, S. R. J. Brueck, "Nanoscale selective growth of GaAs by molecular beam epitaxy," J. Appl. Phys. 90, 4163-4168 (2001).
  61. S. C. Lee, A. Stintz, S. R. J. Brueck, "Nanoscale limited area growth of InAs islands on GaAs(001) by molecular beam epitaxy," J. Appl. Phys. 91, 3282-3288 (2002).
  62. M. A. Cotta, R. A. Hamm, T. W. Staley, R. D. Yadvish, L. R. Harriott, H. Temkin, "Scanning force microscopy measurement of edge growth rate enhancement in selective area epitaxy," Appl. Phys. Lett. 62, 496-498 (1993).
  63. Y. Mishima, N. Kaida, M. Sugiyama, Y. Shimogaki, Y. Nakano, "Two-dimensional simulation of the growth enhancement in selective area metal-organic vapor phase epitaxy," Proc. Symp. Fund. Gas-Phase Surf. Chem. Vapor-Phase Mater. Synthesis (1999) pp. 364-369.
  64. T. Fujii, M. Ekawa, "Origin of compositional modulation of ingaas in selective-area metalorganic vapor-phase epitaxy," J. Appl. Phys. 78, 5373-5386 (1995).
  65. Y. Sugiyama, Y. Nakata, K. Imamura, S. Muto, N. Yokoyama, "Stacked InAs self-assembled quantum dots on (001)GaAs grown by molecular beam epitaxy," Jpn. J. Appl. Phys. 35, 1320-1324 (1996).
  66. I. Mukhametzhanov, Z. Wei, R. Heitz, A. Madhukar, "Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution," Appl. Phys. Lett. 75, 85-87 (1999).
  67. B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, J. L. Rouviere, "Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN," Phys. Rev. B 56, 7069-7072 (1997).
  68. V. C. Elarde, A. C. Bryce, J. J. Coleman, "High performance laser with nanopatterned active layer by selective area epitaxy," Electron. Lett. 41, 1122-1124 (2005).
  69. V. C. Elarde, J. J. Coleman, "Nanoscale selective area epitaxy for optoelectronic devices," Prog. Quant. Electron. 31, 225-257 (2007).
  70. V. C. Elarde, T. S. Yeoh, R. Rangarajan, J. J. Coleman, "Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth," J. Cryst. Growth 272, 148-153 (2004).
  71. V. C. Elarde, J. J. Coleman, "Spectral and threshold performance of patterned quantum dot lasers," Physica C 3, 508-511 (2006).
  72. H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, "Lasing action of Ga$_{0.67}$In$_{0.33}$ As/GaInAsP/InP tensile-strained quantum-box laser," Electron. Lett. 30, 142-143 (1994).
  73. J. Zhang, X. M. Jiang, "Steady-state photoinduced absorption of PbS quantum dots film," Appl. Phys. Lett. 92, 141108-141110 (2008).
  74. T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, Y. Arakawa, "Narrow photoluminescence linewidth (17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition," Appl. Phys. Lett. 84, 2817-2819 (2004).
  75. V. B. Verma, U. Reddy, N. L. Dias, K. P. Bassett, X. Li, J. J. Coleman, "Patterned quantum dot molecule laser fabricated by electron beam lithography and wet chemical etching," Proc. 2010 IEEE Photon. Soc. Winter Topicals Meeting Series pp. 143-144.
  76. V. C. Elarde, J. J. Coleman, "A novel ordered nanopore array diode laser," IEEE Photon. Technol. Lett. 20, 240-242 (2008).
  77. V. B. Verma, J. J. Coleman, "A parametric analysis of the density of states and intraband energy gaps in an ordered nanopore array diode laser," J. Appl. Phys. 105, 043106-1-043106-8 (2009).
  78. V. B. Verma, V. C. Elarde, J. J. Coleman, "An analytical model for the ordered nanopore array diode laser," IEEE J. Quantum Electron. 45, 10-20 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited