OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 6 — Mar. 15, 2011
  • pp: 830–841

Beyond-Bandwidth Electrical Pulse Modulation of a TO-Can Packaged VCSEL for 10 Gbit/s Injection-Locked NRZ-to-RZ Transmission

Chia-Chi Lin, Yu-Chieh Chi, Hao-Chung Kuo, Peng-Chun Peng, Connie J. Chang-Hasnain, and Gong-Ru Lin

Journal of Lightwave Technology, Vol. 29, Issue 6, pp. 830-841 (2011)


View Full Text Article

Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The parametric characterization of a nonreturn-to-zero (NRZ) to return-to-zero (RZ) data format converter based on the external optical NRZ injection of a TO-46-can packaged vertical-cavity surface-emitting laser (VCSEL) directly modulated by a 10 GHz electrical pulse is demonstrated. The electrical-pulse modulation induced gain switching of the VCSEL is initiated under external optical NRZ data injection that increases the relaxation oscillation frequency of the homemade VCSEL from 2.2 to 7.4 GHz, thereby enabling its electrical modulation bandwidth up to 10 GHz. The external NRZ injection reduces the lasing threshold and enlarges the modulation depth of the VCSEL so that the converted RZ data pulsewidth can be shortened to 27 ps with a slightly increased peak-to-peak negative frequency chirp of 4.3 GHz (corresponding to a chirp parameter of 122 MHz/ps). The chirp and bit error rate (BER) display strong correlations with the injection power and the biased current of the VCSEL. With external injection, the receiving power required for achieving a BER below $10^{{-}9}$ at 10 Gbit/s is ${-}19.5$ dBm, and a power penalty of 16dB is observed when the dc bias of the electrical-pulse modulated VCSEL is decreased by only 10% from the threshold condition.

© 2010 IEEE

Citation
Chia-Chi Lin, Yu-Chieh Chi, Hao-Chung Kuo, Peng-Chun Peng, Connie J. Chang-Hasnain, and Gong-Ru Lin , "Beyond-Bandwidth Electrical Pulse Modulation of a TO-Can Packaged VCSEL for 10 Gbit/s Injection-Locked NRZ-to-RZ Transmission," J. Lightwave Technol. 29, 830-841 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-6-830


Sort:  Year  |  Journal  |  Reset

References

  1. S. Bigo, E. Desurvire, S. Gauchard, E. Brun, "Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems," Electron. Lett. 30, 984-985 (1994).
  2. D. Norte, A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
  3. C. W. Chow, C. S. Wong, H. K. Tsang, "All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking ," Opt. Commun. 209, 329-334 ( 2002).
  4. Y. C. Chang, Y. H. Lin, J. H. Chen, G. R. Lin, "All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry–Perot laser diode at unlasing condition," Opt. Exp. 12, 4449-4456 (2004).
  5. L. Noel, X. Shan, A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier ," Electron. Lett. 31, 277-278 (1995).
  6. H. J. Lee, H. G. Kim, J. Y. Choi, H. K. Lee, "All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier," Electron. Lett. 35, 989-990 (1999).
  7. Y. D. Jeong, H. J. Lee, H. Yoo, Y. H. Won, "All-optical NRZ-to-PRZ converter at 10 Gb/s based on self-phase modulation of Fabry–Perot laser diode ," IEEE Photon. Technol. Lett. 16, 1179-1181 (2004).
  8. L. Huo, Y. Dong, C. Lou, Y. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett. 15, 981-983 (2003).
  9. J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, M. J. Zhou, X. L. Zhang, D. X. Huang, M. M. Fejer, "Experimental observation of all-optical nonreturn-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
  10. A. Buxens, H. N. Poulsen, A. T. Clausen, P. Jeppesen, "All-optical OTDM-to-WDM signal-format translation and OTDM add-drop functionality using bidirectional four wave mixing in semiconductor optical amplifier," Electron. Lett. 36, 156-158 (2000).
  11. L. P. Barry, P. Anandarajah, A. Kaszubowsk, "Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry–Perot laser," IEEE Photon. Technol. Lett. 13, 1014-1016 (2001).
  12. W. Hofmann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf, D. Bimberg, M.-C. Amann, C. J. Chang-Hasnain, "22-Gb/s long wavelength VCSELs," Opt. Exp. 17, 17547-17554 (2009).
  13. W. Hofmann, L. Grüner-Nielsen, E. Rönneberg, G. Böhm, M. Ortsiefer, M. C. Amann, "1.55-$\mu$m VCSEL modulation performance with dispersion-compensating fibers," IEEE Photon. Technol. Lett. 21, 1072-1074 (2009).
  14. D. Parekh, X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, C. J. Chang-Hasnain, "Greatly enhanced modulation response of injection-locked multimode VCSELs," Opt. Exp. 16, 21582-21586 (2008).
  15. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, W. W. Chow, "40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 $\mu$m VCSELs," IEEE J. Sel. Topics Quantum Electron. 13, 1200-1208 (2007).
  16. A. Gatto, A. Boletti, P. Boffi, M. Martinelli, "Adjustable-chirp VCSEL-to-VCSEL injection locking for 10-Gb/s transmission at 1.55 $\mu$m," Opt. Exp. 17, 21748-21753 (2009).
  17. K. Hasebe, F. Koyama, "Modeling of all-optical-signal processing devices based on two-mode injection-locked vertical-cavity surface-emitting laser," Jpn. J. Appl. Phys. 45, 6697-6703 (2006).
  18. H. Kawaguchi, Y. Yamayoshi, K. Tamura, "All-optical format conversion using an ultrafast polarizationbistable vertical-cavity surface-emitting laser," Tech. Dig. Conf. Lasers Electro-Opt.(CLEO) pp. 379-380.
  19. K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, K. A. Shore, "Optical injection-induced polarization switching dynamics in 1.5 $\mu$m wavelength single-mode vertical-cavity surface-emitting lasers," IEEE Photon. Technol. Lett. 20, 779-781 (2008).
  20. C. C. Lin, H. C. Kuo, P. C. Peng, G. R. Lin, "Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter," Opt. Exp. 16, 4838-4847 (2008).
  21. C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, "Injection locking of VCSEL," IEEE J. Sel. Topics Quantum Electron. 9, 1386-1393 (2003).
  22. B. Zhang, X. Zhao, D. Parekh, Y. Yue, W. Hofmann, M. C. Amann, C. J. Chang-Hasnain, A. E. Willner, "Reconfigurable multifunctional operation using optical injection-locked vertical-cavity surface-emitting lasers," J. Lightwave Technol. 27, 2958-2963 (2009).
  23. T. C. Lu, J. Y. Tsai, H. C. Kuo, S. C. Wang, "Comparisons of InP/InGaAlAs and InAlAs/InGaAlAs distributed Bragg reflectors grown by metalorganic chemical vapor deposition," Mater. Sci. Eng. B 107, 66-70 (2004).
  24. J. H. Shin, B. S. Yoo, W. S. Han, O. K. Kwon, Y. G. Ju, J. H. Lee, "CW operation and threshold characteristics of all-monolithic InAl-GaAs 1.55- $\mu$m VCSELs grown by MOCVD," IEEE Photon. Technol. Lett. 14, 1031-1033 (2002).
  25. E. K. Lau, L. J. Wong, M. C. Wu, "Enhanced modulation characteristics of optical injection-locked lasers: A tutorial," IEEE J. Sel. Topics Quantum Electron. 15, 618-633 (2009).
  26. K. Petermann, Laser Diode Modulation and Noise (Taipei, Taiwan: Taipei Publications Trading Company, 1992).
  27. A. Murakami, K. Kawashima, K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection ," IEEE J. Quantum Electron. 39, 1196-1204 (2003).
  28. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1992).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited