OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 6 — Mar. 15, 2011
  • pp: 871–879

Performance Evaluation of WDM Systems Through Multicanonical Monte Carlo Simulations

Luca Gerardi, Marco Secondini, and Enrico Forestieri

Journal of Lightwave Technology, Vol. 29, Issue 6, pp. 871-879 (2011)


View Full Text Article

Acrobat PDF (301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In wavelength-division-multiplexed (WDM) systems, performance is affected by the bit patterns on the various channels and, in order to account for this pattern dependence, one should perform a large number of simulations, each by using different patterns of suitable length in all channels and then average all results. However, since the number of patterns to be considered for averaging could be considerable, this approach would be very demanding from a computational point of view, even using multicanonical Monte Carlo (MMC) simulations. In single-channel systems, pattern dependence can be accounted for through the pattern perturbation method, a computationally efficient way for performing a random walk over an extended state space, which includes, in addition to noise components, also the transmitted bit pattern. In this way, not only the most relevant noise configurations but also the most relevant bit patterns (those having a major impact on the error events) are sampled more frequently by the MMC simulation, leading to enhanced efficiency in estimating the error probability. Here, the pattern perturbation method is extended to the WDM case, and simulations results are reported to show the effectiveness of the proposed approach.

© 2010 IEEE

Citation
Luca Gerardi, Marco Secondini, and Enrico Forestieri, "Performance Evaluation of WDM Systems Through Multicanonical Monte Carlo Simulations," J. Lightwave Technol. 29, 871-879 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-6-871

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited