OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 6 — Mar. 15, 2011
  • pp: 888–897

Analysis of Dielectric Photonic-Crystal Problems With MLFMA and Schur-Complement Preconditioners

Özgür Ergül, Tahir Malas, and Levent Gürel

Journal of Lightwave Technology, Vol. 29, Issue 6, pp. 888-897 (2011)


View Full Text Article

Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present rigorous solutions of electromagnetics problems involving 3-D dielectric photonic crystals (PhCs). Problems are formulated with recently developed surface integral equations and solved iteratively using the multilevel fast multipole algorithm (MLFMA). For efficient solutions, iterations are accelerated via robust Schur-complement preconditioners. We show that complicated PhC structures can be analyzed with unprecedented efficiency and accuracy by an effective solver based on the combined tangential formulation, MLFMA, and Schur-complement preconditioners.

© 2011 IEEE

Citation
Özgür Ergül, Tahir Malas, and Levent Gürel, "Analysis of Dielectric Photonic-Crystal Problems With MLFMA and Schur-Complement Preconditioners," J. Lightwave Technol. 29, 888-897 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-6-888


Sort:  Year  |  Journal  |  Reset

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton Univ. Press, 2008).
  2. P. Loschialpo, D. W. Forester, J. Schelleng, "Anomalous transmission through near unit index contrast dielectric photonic crystals," J. Appl. Phys. 86, 5342-5347 (1999).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  4. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
  5. A. Talneau, P. Lalanne, M. Agio, C. M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002).
  6. S. Boscolo, M. Midrio, "Three-dimensional multiple-scattering technique for the analysis of photonic-crystal slabs," J. Lightw. Technol. 22, 2778-2786 (2004).
  7. D. Pissoort, E. Michielssen, D. V. Ginste, F. Olyslager, "Fast-multipole analysis of electromagnetic scattering by photonic crystal slabs," J. Lightw. Technol. 25, 2847-2863 (2007).
  8. R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, F. P. H. Van Beck Um, "Numerical studies of 2-D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
  9. A. Mekis, J. D. Joannopoulos, "Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides," J. Lightw. Technol. 19, 861-865 (2001).
  10. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightw. Technol. 19, 1970-1975 (2001).
  11. W. Kuang, W. J. Kim, J. D. O'Brien, "Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals," J. Lightw. Technol. 25, 2612-2617 (2007).
  12. S. Venakides, M. A. Haider, V. Papanicolaou, "Boundary integral calculations of two-dimensional electromagnetic scattering by photonic crystal Fabry–Perot structures," J. Appl. Math. 60, 1686-1706 (2000).
  13. T.-L. Wu, J.-S. Chiang, C.-H. Chao, "A novel approach for calculating the dispersions of photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1492-1494 (2004).
  14. J. Yuan, Y. Y. Lu, X. Antoine, "Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps," J. Comput. Phys. 227, 4617-4629 (2008).
  15. A. J. Poggio, E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).
  16. T. K. Wu, L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci. 12, 709-718 (1977).
  17. Y. Chang, R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat. AP-25, 789-795 (1977).
  18. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer-Verlag, 1969).
  19. J. Song, C.-C. Lu, W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat. 45, 1488-1493 (1997).
  20. P. Ylä-Oijala, M. Taskinen, S. Järvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Sci. 40, (2005) doi:10.1029/2004RS003169.
  21. P. Ylä-Oijala, M. Taskinen, "Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects," IEEE Trans. Antennas Propag. 53, 3316-3323 (2005).
  22. P. Ylä-Oijala, M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Antennas Propag. 53, 1168-1173 (2005).
  23. S. M. Rao, D. R. Wilton, A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag. AP-30, 409-418 (1982).
  24. Ö. Ergül, L. Gürel, "Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm," IEEE Trans. Antennas Prop. 57, 176-187 (2009).
  25. Ö. Ergül, L. Gürel, "Discretization error due to the identity operator in surface integral equations," Comput. Phys. Comm. 180, 1746-1752 (2009).
  26. M. Benzi, G. H. Golub, J. Liesen, "Numerical solution of saddle point problems," Acta Numer. 14, 1-137 (2005).
  27. Ö. Ergül, L. Gürel, "Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning," Radio Sci. 44, RS6001-1-RS6001-15 (2009) RS6001, doi:10.1029/2009RS004143.
  28. E. Chow, Y. Saad, "Approximate inverse techniques for block-partitioned matrices," J. Sci. Comput. 18, 1657-1675 (1997).
  29. P. Ylä-Oijala, M. Taskinen, S. Järvenpää, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Eng. Anal. Boundary Elem. 32, 196-209 (2008).
  30. C. Siefert, E. de Sturler, "Preconditioners for generalized saddle-point problems," J. Numer. Anal. 44, 1275-1296 (2006).
  31. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, 2003).
  32. T. Malas, L. Gürel, "Incomplete LU preconditioning with multilevel fast multipole algorithm for electromagnetic scattering," J. Sci. Comput. 29, 1476-1494 (2007).
  33. T. Malas, L. Gürel, "Schur complement preconditioners for surface integral-equation formulations of dielectric problems solved with the multilevel fast multipole algorithm," SIAM J. Sci. Comput. (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited