OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 8 — Apr. 15, 2011
  • pp: 1172–1181

Optimization of Raman-Assisted Fiber Optical Parametric Amplifier Gain

Shao Hao Wang, Lixin Xu, P. K. A. Wai, and Hwa Yaw Tam

Journal of Lightwave Technology, Vol. 29, Issue 8, pp. 1172-1181 (2011)


View Full Text Article

Acrobat PDF (724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We studied the gain of Raman-assisted fiber optical parametric amplifiers (RA-FOPAs) both theoretically and experimentally. We investigated the relationship between the overall gain and different combinations of Raman and parametric pump powers using contour maps. We derived a normalized phase-matched model to determine the general behavior the peak gains of RA-FOPAs operating in the small signal region. The contour maps of the combined gain enhancement can be used to optimize both indirect and direct Raman gain of the signal/idler in RA-FOPAs. We showed that, in a given fiber, it is possible to optimize the Raman and parametric pump powers in RA-FOPAs for high gain and high efficiency.

© 2011 IEEE

Citation
Shao Hao Wang, Lixin Xu, P. K. A. Wai, and Hwa Yaw Tam, "Optimization of Raman-Assisted Fiber Optical Parametric Amplifier Gain," J. Lightwave Technol. 29, 1172-1181 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-8-1172


Sort:  Year  |  Journal  |  Reset

References

  1. E. Desurvire, Erbium Doped Fiber Amplifiers, Principle and Application (Wiley, 1994).
  2. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  3. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
  4. C. J. McKinstrie, S. Radic, A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Topics Quantum Electron. 8, 538-547 (2002).
  5. M. N. Islam, Raman Amplifiers for Telecommunications 1: Physical Principles (Springer, 2004).
  6. C. Headley, G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  7. Global Bandwidth Research Service Exclusive Summery pp. 2 (2010.) http://www.telegeo graphy.com/product-info/gb/ Telegeography research, PriMetrica, Inc..
  8. R. C. Alferness, P. A. Bonenfant, C. J. Newton, K. A. Sparks, E. L. Varma, "A practical vision for optical transport networking," Bell Labs Tech. J. 3-18 (1999).
  9. D. Mazzarese, "AllWave FLEX ZWP fiber white paper," OFS Technical Resource (2006).
  10. C. R. Davidson, C. J. Chen, M. Nissov, A. Pilipetskii, N. Ramanujam, H. D. Kidorf, B. Pedersen, M. A. Mills, C. Lin, M. I. Hayee, J. X. Cai, A. B. Puc, P. C. Corbett, R. Menges, H. Li, A. Elyamani, "1800 Gb/stransmission of one hundred and eighty 10 Gb/sWDM channels over 7000 km using the full EDFA C-band," Proc. Optical Fiber Commun. Conf. (2000).
  11. T. Torounidis, P. A. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
  12. T. Torounidis, P. A. Andrekson, B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett. 18, 1194-1196 (2006).
  13. J. L. Blows, S. E. French, "Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump," Opt. Lett. 27, 491-493 (2002).
  14. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, L. G. Kazovsky, "Continuous-wave fiber optical parametric wavelength converter with 40-dB conversion efficiency and a 3.8-dB noise figure," Opt. Lett. 28, 692-694 (2003).
  15. P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, P. A. Andrekson, "Correction to ‘Noise characteristics of fiber optical parametric amplifiers’," J. Lightw. Technol. 23, 2192 (2005).
  16. H. Masuda, S. Kawai, K. I. Suzuki, "Optical SNR enhance amplification in long-distance re-circulating loop WDM transmission experiment using 1580 nm band hybrid amplifier," Electron. Lett. 35, 411-412 (1999).
  17. H. S. Seo, W. J. Chung, J. T. Ahn, "A novel hybrid silica wideband amplifier covering S+C +L bands with 105-nm bandwidth," IEEE Photon. Technol. Lett. 17, 1830-1832 (2005).
  18. H. S. Seo, Y. G. Choi, B. J. Park, D. H. Cho, K. H. Kim, "Simultaneous amplification by Er ions and SRS in an Er-doped germane—silica fiber," IEEE Photon. Technol. 15, 1198-1200 (2003).
  19. D. A. Chestnut, C. J. S. de Matos, J. R. Taylor, "Raman-assisted fiber optical parametric amplifier and wavelength converter in highly nonlinear fiber," J. Opt. Soc. Amer. B 19, 1901-1904 (2002).
  20. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, J. R. Taylor, "Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber," Opt. Lett. 26, 1583-1585 (2001).
  21. J. F. L. Freitas, N. B. Costa e Silva, S. R. Lüthi, A. S. L. Gomes, "Raman enhanced parametric amplifier based S-C band wavelength converter: Experiment and simulations," Opt. Commun. 255, 314-318 (2005).
  22. S. H. Wang, L. Xu, P. K. A. Wai, "Noise characterization of Raman-assisted fiber optical parametric amplifiers," Proc. 14th OptoElectron. Commun. Conf. (2009).
  23. S. H. Wang, L. Xu, P. K. A. Wai, H. Y. Tam, "6.4-dB enhancement of the gain of a Raman-assisted fiber optical parametric amplifier over the sum of the gains of individual amplifiers," Proc. Opt. Fiber Commun. Conf. (2008).
  24. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Topics Quantum Electron. 8, 506-520 (2002).
  25. TrueWave® RS Fiber LWP Specification Sheet Denmark (2009) OFS Fitel LLC..
  26. Highly Non-Linear Fiber Specification Sheet Denmark (2009) Ver. 070401 LGN, OFS Fitel LLC..
  27. Raman Fiber Specification Sheet Denmark (2007) Ver. 041307, OFS Fitel LLC..
  28. P. K. A. Wai, C. R. Menyak, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightw. Technol. 14, 148-157 (1996).
  29. Q. Lin, G. P. Agrawal, "Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers," J. Opt. Soc. Amer. B. 20, 1616-1631 (2003).
  30. Q. Lin, G. P. Agrawal, "Effects of polarization-mode dispersion on fiber based parametric amplification and wavelength conversion," Opt. Lett. 29, 1114-1116 (2004).
  31. B. Min, W. J. Lee, N. Park, "Efficient formulation of Raman amplifier propagation equations with average power analysis," IEEE Photon. Technol. Lett. 12, 1486-1488 (2000).
  32. S. H. Wang, L. Xu, P. K. A. Wai, H. Y. Tam, "All-optical wavelength conversion using multi-pump Raman-assisted four-wave mixing," Proc. Opt. Fiber Commun. Conf. (2007).
  33. A. Koybyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, "Stimulated brillouin scattering in the Raman-pumped fibers: A theoretical approach," J. Lightw. Technol. 20, 1635-1643 (2002).
  34. G. Cappellini, S. Trillo, "Third-order three-wave mixing in single-mode fibers: Exact solutions and spatial instability effects," J. Soc. Amer. B 8, 824-838 (1991).
  35. R. W. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantam Electron. 5, 1-68 (1977).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited