OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 9 — May. 1, 2011
  • pp: 1285–1292

Microring-Based Unitraveling Carrier Photodiodes for High Bandwidth-Efficiency Product Photodetection in Optical Communication

Mitra Hosseinifar, Vahid Ahmadi, and Gholamreza Abaeiani

Journal of Lightwave Technology, Vol. 29, Issue 9, pp. 1285-1292 (2011)

View Full Text Article

Acrobat PDF (561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel structure of unitraveling carrier photodiodes (UTC-PDs) with high-speed, high-efficiency, and wavelength selective characteristics is presented. Including the essential features of resonant cavity enhanced photodiodes and waveguide photodiodes, we propose microring-based UTC-PDs (MR-UTC-PDs) which can achieve excellent high-speed and high-quantum efficiency characteristics simultaneously. The photoresponse of MR-UTC-PDs is based on a drift-diffusion model. Photoresponse characteristics of MR-UTC-PDs, which depend on device parameters and coupling conditions, are investigated and it is shown that the overcoupled structures are suitable for high-speed photodetection. The important features of the device, such as efficiency enhancement and wavelength selectivity are discussed and the trade-off between 3 dB bandwidth and efficiency is solved for nanoscaled absorption layer. Additionally, the bandwidth-efficiency product in the order of several hundreds gigahertz can be obtained even with low photoabsorption layers.

© 2011 IEEE

Mitra Hosseinifar, Vahid Ahmadi, and Gholamreza Abaeiani, "Microring-Based Unitraveling Carrier Photodiodes for High Bandwidth-Efficiency Product Photodetection in Optical Communication," J. Lightwave Technol. 29, 1285-1292 (2011)

Sort:  Year  |  Journal  |  Reset


  1. T. Ishibashi, S. Kodama, N. Shimizu, T. Furata, "High speed response of uni-traveling carrier photodiode," Jpn. J. Appl. Phys. 36, 6263-6268 (1997).
  2. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, Y. Miyamoto, "InP/InGaAs uni-traveling-carrier photodiodes," IEICE Trans. Electron E83-C, 938-949 (2000).
  3. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, "High-speed and high-output InP-InGaAs UTC-PD," IEEE J. Sel. Top. Quantum Electron. 10, 709-727 (2004).
  4. Y. Muramoto, K. Kato, M. Mitsuhara, O. Nakajima, Y. Matsuoka, N. Shimizu, T. Ishibashi, "High-output voltage, high speed, high efficiency uni-traveling-carrier waveguide photodiode," Electron. Lett. 34, 122-123 (1998).
  5. H. Fukano, Y. Muramoto, K. Takahata, Y. Matsuoka, "High-efficiency edge-illuminated uni-traveling-carrier-structure refracting-facet photodiode," Electron. Lett. 35, 1664-1665 (1999).
  6. Y. Muramoto, H. Fukano, T. Furuta, Y. Matsuoka, "A polarization-independent high-efficiency refracting-facet-traveling-carrier photodiode with a bandwidth over 50 GHz," Proc. 26th Eur. Conf. Opt. Commun. (2000) pp. 109-110.
  7. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, "High-efficiency uni-traveling-carrier PD with an integrated total-reflection mirror," J. Lightw. Technol. 18, 384-387 (2000).
  8. Y. Hirota, T. Ishibashi, H. Ito, "1.55-$\mu$m wavelength periodic traveling-wave photodetector fabricated using uni-traveling-carrier photodiode structures," IEEE J. Lightw. Technol. 19, 1751-1758 (2001).
  9. Y. Muramoto, T. Ishibashi, "InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency," Electron. Lett. 39, 1749-1750 (2003).
  10. X. Li, S. Demiguel, N. Li, J. C. Campbell, D. L. Tulchinsky, K. J. Williams, "Backside illuminated high saturation partially depleted absorber photodetectors," Electron. Lett. 39, 1466-1467 (2003).
  11. D. Jun, J. Jang, I. Adesida, J. Song, "Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using undoped photo-absorption layer," Jpn. J. Appl. Phys. 45, 3475-3478 (2006).
  12. Y. S. Wu, J. W. Shi, P. H. Chiu, "High-performance dual-step evanescently coupled UTC-PDs," IEEE Photon. Technol. Lett. 19, 1682-1684 (2007).
  13. M. S. Unlu, G. Ulu, M. Gokkavavas, Resonant Cavity Enhanced Photodetectors in Photodetectors and Fiber Optics (Academic, 2001).
  14. Y. G. Xiao, M. J. Deen, "Frequency response and modeling of resonant cavity separate absorption, charge and multiplication avalanche photodiode," IEEE J. Lightw. Technol. 19, 1010-1022 (2001).
  15. E. Batawy, M. J. Deen, "Effects of the parasitics on the time response of RCE-PDs," IEEE Trans. Electron Devices 52, 325-334 (2005).
  16. J. Guo, Y. Zuo, Y. Zhuang, W. Ding, B. Cheng, J. Yu, Q. Wang, "Simulation research of nonlinear behaviour induced by the charge-carrier effect in resonant cavity enhanced photodetectors," IEEE J. Lightw. Technol. 25, 2783-2790 (2007).
  17. K. Kato, A. Kozen, Y. Itaya, T. Nagatsuma, M. Yaita, "110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55 $\mu$m wavelength," IEEE Photon. Technol. Lett. 6, 719-721 (1994).
  18. E. Batawy, M. J. Deen, "Analysis, circuit modeling and optimization of mushroom-WG-PDs," IEEE J. Lightw. Technol. 23, 423-431 (2005).
  19. Gh. Abaeiani, V. Ahmadi, K. Saghafi, "Design & analysis of resonant cavity enhanced waveguide photodetectors for microwave photonics applications," IEEE Photon. Technol. Lett. 18, 1597-1599 (2006).
  20. H. M. Xin, Y. Q. Huang, H. B. Chen, H. Huang, X. Ren, X. G. Zhou, "Design and Fabrication of InP micro-ring resonant detectors," Optoelectron. Lett. 5, 6-10 (2009).
  21. L. Liu, J. Brouckaert, G. Roelkens, D. Van Thourhout, R. Baets, "Compact, wavelength-selective resonant photodetector based on III-V/silicon-on-insulator heterogeneous integration," Proc. Conf. Lasers Electro-Opt. (CLEO'09) p.CTuV3 (2009) pp. 1595-1596.
  22. R. Shafiiha, D. Zheng, S. Liao, P. Dong, H. Liang, N. Feng, B. J. Luff, D. Feng, G. Li, J. Cunningham, K. Raj, A. V. Krishnamoorthy, M. Asghari, "Silicon waveguide coupled resonator infrared detector," Proc. Opt. Fiber Commun. Conf., Collocated Natl. Fiber Opt. Eng. Conf. (OFC/NFOEC) (2010) pp. 1-3.
  23. Gh. Abaeiani, Microring based resonant cavity waveguide photodetectors Ph.D. Thesis Tarbiat Modares Univ.TehranIran (2007).
  24. Gh. Abaeiani, V. Ahmadi, K. Saghafi, "Microring-based resonant cavity waveguide photodetectors for WDM optical system," Proc. 9th Int. Conf. Transp. Opt. Netw. (ICTON'07) () pp. 184-187.
  25. S. Manipatruni, L. Chen, M. Lipson, "Ultra high bandwidth WDM using silicon microring modulators," Opt. Exp. 18, 16858-16867 (2010).
  26. A. Leinse, M. B. J. Diemeer, A. Driessen, "High speed electro optic polymer micro-ring resonator," Proc. IEEE Lasers Electro-Opt. Soc. (LEOS'04) () pp. 111-114.
  27. G. Gupta, Microring resonator based filters and modulators: Optical coupling control and application to digital communications Ph.D. Thesis Univ. Southern CaliforniaLos AngelesCA (2008).
  28. J. T. Verdeyen, Laser Electronics 2nd ed. (Prentice-Hall, 1989).
  29. J. V. Campenhout, P. R. Romeo, D. V. Thourhout, C. Seassal, Ph. Regreny, L. D. Cioccio, J. Fedeli, R. Baets, "Design and optimization of electrically injected inp-based microdisk lasers integrated on and coupled to a SOI waveguide circuit," IEEE J. Lightw. Technol. 26, 52-63 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited