OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 9 — May. 1, 2011
  • pp: 1335–1342

Towards a High Performance Fiber Laser Hydrophone

Scott Foster, Alexei Tikhomirov, and John van Velzen

Journal of Lightwave Technology, Vol. 29, Issue 9, pp. 1335-1342 (2011)

View Full Text Article

Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The operating principle and theory of a fiber laser bender hydrophone is presented. We report experimental results for a micro-engineered silicon fiber laser hydrophone. The hydrophone has a flat pressure responsivity of 107 dB re Hz/Pa over a bandwidth exceeding 5 kHz, corresponding to ocean noise limited acoustic sensitivity. The first structural resonance of the hydrophone is 9 kHz in water and the acceleration rejection is in excess of 0 dB re ms$^{{-}2}$/Pa up to 5 kHz.

© 2011 Crown

Scott Foster, Alexei Tikhomirov, and John van Velzen, "Towards a High Performance Fiber Laser Hydrophone," J. Lightwave Technol. 29, 1335-1342 (2011)

Sort:  Year  |  Journal  |  Reset


  1. J. Bucaro, H. Dardy, E. Carome, "Fiber-optic hydrophone," J. Acoust. Soc. Amer. 62, 1302-1304 (1977).
  2. J. Cole, R. Johnson, P. Bhuta, "Fiber-optic detection of sound," J. Acoust. Soc. Amer. 62, 1136-1138 (1977).
  3. T. Giallorenzi, J. Bucaro, A. Dandridge, G. Sigel, JrJ. Cole, S. Rashleigh, R. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
  4. P. Nash, "Review of interferometric optical fibre hydrophone technology," IEE Proc. Radar, Sonar, Navig. 143, 204-209 (1996).
  5. C. Kirkendall, A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
  6. C. Kirkendall, J. Cole, A. Tveten, A. Dandridge, "Progress in fiber optic acoustic and seismic sensing," Proc. Opt. Fiber Sens. OSA Tech. Dig. (2006).
  7. K. H. Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54 (1992).
  8. K. Koo, A. Kersey, "Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation," Electron. Lett. 31, 1180-1182 (1995).
  9. S. Foster, G. Cranch, A. Tikhomirov, "Experimental evidence for the thermal origin of $1/f$ frequency noise in erbium doped fiber lasers," Phys. Rev. A 79, 053802 (2009).
  10. G. Cranch, G. Flockhart, C. Kirkendall, "Distributed feedback fiber laser strain sensors," IEEE Sens. J. 8, 1161-1171 (2008).
  11. K. Koo, A. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightw. Tech. 13, 1243-1249 (1995).
  12. S. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, M. Milnes, "A 16 channel fibre laser sensor array," Proc. Opt. Fiber Sens. OSA Tech. Dig. (2006).
  13. D. Hill, P. Nash, D. Jackson, D. Webb, S. 'Neill, I. Bennion, I. Zhang, "A fibre laser hydrophone array," Proc. SPIE (1999) pp. 55-66.
  14. D. Hill, P. Nash, "In-water acoustic response of a coated DFB fibre laser sensor," Proc. 14th Int. Conf. Opt. Fiber Sens. (2000) pp. 33-66.
  15. L. Hansen, F. Kullander, "Modelling of hydrophone based on a DFB fiber laser," Proc. XXI ICTAM (2004).
  16. F. Kullander, “Fiber laser technology for underwater sensors,” FOI-Swedish Defence Research Agency Report no. FOI-R-0726-SE (2002).
  17. W. Zhang, Y. Liu, F. Li, H. Xiao, "Fiber laser hydrophone based on double diaphragms: Theory and experiment," J. Lightw. Technol. 26, 1349-1352 (2008).
  18. L. Ma, Y. Hu, H. Luo, Z. Hu, "DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity," IEEE Photon. Technol. Lett. 21, 1280-1282 (2009).
  19. S. Foster, A. Tikhomirov, M. Milnes, J. van Vetzen, G. Hardy, "A fibre laser hydrophone," Proc. SPIE (2005) pp. 627-630.
  20. S. Goodman, A. Tikhomirov, S. Foster, "Pressure compensated distributed feedback fibre laser hydrophone," Proc. SPIE (2008).
  21. S. Goodman, S. Foster, J. van Velzen, H. Mendis, "Field demonstration of a DFB fibre laser hydrophone seabed array of jervis bay, Australia," Proc. SPIE (2009).
  22. S. Foster, A. Tikhomirov, "Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers," IEEE J. Quantum Electron. 41, 762-766 (2005).
  23. W. Weaver, Jr.S. P. Timoshenko, D. H. Young, Vibration Problems in Engineering (Wiley, 1990).
  24. L. Kinsler, A. Frey, A. Coppens, J. Senders, Fundamentals of Acoustics (Wiley, 1982).
  25. H. Levine, "On the radiation impedance of a rectangular piston," J. Sound Vib. 89, 447-445 (1983).
  26. Benthos Undersea Systems Technology (1994) RDA Hydrophone Data-sheet, Benthos Inc..
  27. D. Cato, "Ambient sea noise in Australian waters," 5th Int. Congress on Sound and Vibration AdelaideSA (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited