OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1377–1385

Investigation of Optical Flatness of Stretched Membrane Drum-Type Micromirror

Subrata Kumar Kundu, Akiyoshi Hikita, Shinya Kumagai, and Minoru Sasaki

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1377-1385 (2012)

View Full Text Article

Acrobat PDF (1486 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Realizing an optically flat and lightweight high-speed scanning micromirror still remains as a challenging problem. In this paper, we propose a drum-type lightweight micromirror that is capable of providing high scanning speed and retaining optical flatness, simultaneously. The fabrication technique and surface deformation analysis of the proposed micromirror are described. The drum-type design is realized using a stretched polycrystalline (poly-) Si membrane across a rigid crystalline (c-) Si ring. The tensile stress in the poly-Si membrane is 300–400 MPa that keeps the membrane flat. At the static condition, the total peak-to-valley surface heights in the center poly-Si membrane of the designed five distinct shapes of micromirrors are varied from 16 to 29 nm. The stress concentration at mirror edge is investigated by the amount of surface distortion which is less than 40 nm (i.e., one-tenth wavelength of the blue light). The maximum total peak-to-valley surface height is about 50 nm and the dominant profile is at the connecting part between the c-Si ring and the poly-Si membrane. The amount of dynamic deformation in the poly-Si membrane is less than 40 nm. This satisfies the optical flatness compared to the wavelength of blue light.

© 2012 IEEE

Subrata Kumar Kundu, Akiyoshi Hikita, Shinya Kumagai, and Minoru Sasaki, "Investigation of Optical Flatness of Stretched Membrane Drum-Type Micromirror," J. Lightwave Technol. 30, 1377-1385 (2012)

Sort:  Year  |  Journal  |  Reset


  1. P. M. Hagelin, O. Solgaard, "Optical raster-scanning displays based on surface micromachined polysilicon mirrors," IEEE J. Sel. Topics. Quantum Electron. 5, 67-74 (1999).
  2. M. H. Kiang, O. Solgaard, R. Muller, K. Y. Lau, "Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning," J. Microelectromech. Syst. 7, 27-37 (1998).
  3. M. H. Kiang, O. Solgaard, R. Muller, K. Y. Lau, "Micromachined polysilicon microscanners for barcode readers," IEEE Photon. Technol. Lett. 8, 1707-1709 (1996).
  4. H. Miyajima, K. Murakami, M. Katashiro, "MEMS optical scanners for microscopes," IEEE J. Sel. Topics. Quantum Electron. 10, 514-527 (2004).
  5. R. T. Chen, H. Nguyen, M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2$\,\times\,$2 optical switch," IEEE Photon. Technol. Lett. 11, 1396-1398 (1999).
  6. M. Sasaki, T. Sasaki, K. Hane, H. Miura, "An optically flat micromirror using a stretched membrane with crystallization-induced stress," J. Opt. A: Pure Appl. Opt. 10, 1-8 (2008).
  7. S. Kurth, R. Hahn, C. Kaufmann, K. Kehr, J. Mehner, U. Wollmann, W. Dotzel, T. Gessner, "Silicon mirrors and micromirror arrays for spatial laser beam modulation," Sens. Actuators A A66, 76-82 (1998).
  8. J. T. Nee, Hybrid surface-/bulk-micromachining processes for scanning micro-optical components Ph.D. dissertation Dept. Elect. Eng. Comput. Sci. Univ. CaliforniaBerkeley (2001).
  9. K. E. Petersen, "Silicon torsional scanning mirror," IBM J. Res. Devel. 24, 631-637 (1980).
  10. D. L. Hetherington, J. J. Sniegowski, "Improved polysilicon surface-micromachined micromirror devices using chemical-mechanical polishing," Proc. SPIE (1998) pp. 148-153.
  11. R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, O. Solgaard, K. Y. Lau, R. S. Muller, "A full-motion video display using micromachined scanning micromirrors," Proc. Transducers (1999) pp. 376-379.
  12. J. T. Nee, R. A. Conant, M. R. Hart, R. S. Muller, K. Y. Lau, "Stretched-film micromirrors for improved optical flatness," Proc. IEEE 13th Annu. Int. Conf. MEMS (2000) pp. 704-709.
  13. P. R. Patterson, G. J. Su, H. Toshiyoshi, M. C. Wu, "A MEMS 2-D scanner with bonded single-crystalline honeycomb micromirror," Proc. Solid-State Sensor Actuator Conf. (2000) pp. 17-18.
  14. V. Milanovic, M. Last, K. S. J. Pister, "Laterally actuated torsional micromirrors for large static deflection," IEEE Photon. Technol. Lett. 5, 1-4 (2003).
  15. H. Y. Lin, W. Fang, "A rib reinforced micro torsional mirror driven by electrostatic torque generators," Sens. Actuators A 105, 1-9 (2003).
  16. S. Hsu, T. Klose, C. Drabe, H. Schenk, "Fabrication and characterization of a dynamically flat high resolution micro-scanner," J. Opt. A: Pure Appl. Opt. 10, 1-9 (2008).
  17. C. H. Ji, M. Choi, S. C. Kim, S. H. Lee, S. H. Kim, Y. Yee, J. U. Bu, "An electrostatic scanning micromirror with diaphragm mirror plate and diamond-shaped reinforcement plate," J. Micromech. Microeng. 16, 1033-1039 (2006).
  18. M. Mita, Y. Mita, H. Toshiyoshi, H. Fujita, "Multiple-height microstructures fabricated by ICP-RIE and embedded masking layers," IEEJ Trans. Sensors Micromachines 120-E, 493-497 (2000).
  19. M. Sasaki, D. Briand, W. Noell, N. Rooij, K. Hane, "Three-dimensional SOI-MEMS constructed by buckled bridges and vertical comb drive actuator," IEEE J. Sel. Top. Quantum Electron. 10, 455-461 (2004).
  20. A. T. Voustas, M. K. Hatalis, "Structure of as-deposited LPCVD silicon films at low deposition temperatures and pressures," J. Electrochem. Soc. 139, 2659-2665 (1992).
  21. H. Miura, H. Ohta, N. Okamoto, T. Kaga, "Crystallization-induced stress in amorphous silicon thin films," Trans. JSME A 58, 1960-1965 (1996) (in Japanese).
  22. H. Miura, A. Nishimura, "Effect of phosphorus-doping on crystallization-induced stress of silicon thin films," Trans. JSME 61, 1051-1056 (1995) (in Japanese).
  23. S. Kumagai, A. Hikita, T. Iwamoto, T. Tomikawa, M. Hori, M. Sasaki, "Multiple-height microstructure fabricated by deep reactive ion etching and selective ashing of resist layer combined with ultraviolet curing," Jpn. J. Appl. Phys. 51, 01AB04 1-01AB04 6 (2012).
  24. R. A. Conant, Micromachined Mirrors (Kluwer, 2003) pp. 79-89.
  25. M. Sasaki, M. Fujishima, K. Hane, H. Miura, "Simultaneous realization of stabilized temperature characteristics and low-voltage driving of micromirror using thin film torsion bar of tensile poly-Si," IEEE J. Sel. Top. Quantum Electron. 15, 1455-1462 (2009).
  26. K. Yamada, T. Kuriyama, "A glasses-like retinal display using asymmetric silicon micro-mirrors," IEE J. Trans. Sens. Micromachines 129, 35-40 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited