OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1422–1432

Birefringence of Hybrid PCF and Its Sensitivity to Strain and Temperature

M. Pang, L. M. Xiao, W. Jin, and Arismar Cerqueira S.

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1422-1432 (2012)

View Full Text Article

Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The modal and group birefringence of a hybrid photonic crystal fiber (hybrid PCF) and the sensitivities of modal birefringence of hybrid PCF to strain and temperature are investigated. The hybrid PCF composes of air-holes and Ge-doped silica rods surrounding a silica core region and light is confined to the core by hybrid index-guiding and photonic bandgap effects. A theoretical model was established and used to calculate these birefringence properties as functions of Ge concentration and diameter of the Ge-doped region. In experiments, the birefringence properties of a hybrid PCF made by University of Bath were measured by using a Sagnac interferometer. The experimental results show that the sensitivities of fringe minimum of this Sagnac interferometer to strain and temperature, at the wavelength of 1550 nm, were 2.01 nm/m$\varepsilon$ and -$0.334 nm/°C, respectively, which agree well with the theoretical predictions. The model may be used to design hybrid PCFs with desired birefringence properties.

© 2012 IEEE

M. Pang, L. M. Xiao, W. Jin, and Arismar Cerqueira S., "Birefringence of Hybrid PCF and Its Sensitivity to Strain and Temperature," J. Lightwave Technol. 30, 1422-1432 (2012)

Sort:  Year  |  Journal  |  Reset


  1. J. Noda, K. Okamoto, Y. Sasaki, "Polarization-maintaining fibers and their applications," IEEE. J. Lightw. Technol. 4, 1071-1089 (1986).
  2. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," J. Lightw. Technol. 19, 495-503 (2001).
  3. F. Zhang, J. W. Y. Lit, "Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers," Appl. Opt. 32, 2213-2218 (1993).
  4. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, X. Dong, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005).
  5. A. N. Starodumov, L. A. Zenteno, D. Monzon, E. D. L. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
  6. C. L. Zhao, X. Yang, C. Lu, W. Jin, M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE. Photon. Technol. Lett. 16, 2535-2537 (2004).
  7. X. Dong, H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer," Appl. Phys. Lett. 90, 151113 (2007).
  8. T. Martynkien, M. Szqulak, W. Urbanczyk, "Modeling a measurement of temperature sensitivity in birefringent photonic crystal holey fibers," Appl. Opt. 44, 7780-7788 (2005).
  9. K. S. Chiang, D. Wong, P. L. Chu, "Strain-induced birefringence in a highly birefringent optical fibre," Electron. Lett. 26, 1344-1346 (1990).
  10. K. S. Chiang, D. Wong, "Hydrostatic pressure induced birefringence in a highly birefringent optical fibre," Electron. Lett. 26, 1952-1954 (1990).
  11. K. S. Chiang, "Temperature sensitivity of coated stress-induced birefringent optical fibers," Opt. Eng. 36, 999-1007 (1997).
  12. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
  13. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmet, B. J. Eggleton, K. Himeno, "Birefringent all-solid hybrid microstructured fiber," Opt. Exp. 16, 18752-18763 (2008).
  14. J. Sun, C. C. Chan, "Hybrid guiding in liquid-crystal photonic crystal fibers," J. Opt. Soc. Am. B 24, 2640-2646 (2007).
  15. A. Cerqueira S., Jr.F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid photonic crystal fiber," Opt. Exp. 14, 926-931 (2006).
  16. L. Xiao, W. Jin, M. S. Demokan, "Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: Hybrid PCFs," Opt. Exp. 15, 15637-15647 (2007).
  17. A. Cerqueira S., Jr.D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, H. L. Fragnito, "Broadband single-polarization guidance in hybrid photonic crystal fibers," Opt. Lett. 36, 133-135 (2011).
  18. J. K. Lyngso, B. J. Mangan, C. B. Olausson, P. J. Roberts, "Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers," Opt. Exp. 18, 14031-14036 (2010).
  19. S. Herstrom, L. G. Nielsen, B. Palsdottir, "Acoustic index of Ge-doped optical fibers," Opt. Lett. 34, 3689-3691 (2009).
  20. I. P. Kaminow, V. Ramaswamy, "Single-polarization optical fibers: Slad model," Appl. Phys. Lett. 34, 268-270 (1979).
  21. D. M. Zhu, T. Kosugi, "Thermal conductivity of GeO2-SiO2 and TiO2-SiO2 mixed glasses," J. Non-Crystalline Solids 202, 88-92 (1996).
  22. N. Lagakos, J. A. Bucaro, R. Hughes, "Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering," Appl. Opt. 19, 3668-3670 (1980).
  23. S. P. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, 1970).
  24. C. D. Butter, G. B. Hocker, "Fiber optics strain gauge," Appl. Opt. 17, 2867-2869 (1978).
  25. J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, 1957).
  26. J. Ju, W. Jin, M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
  27. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
  28. X. Fang, R. O. Claus, "Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer," Opt. Lett. 20, 2146-2148 (1995).
  29. B. Dong, D. Zhou, "Space division multiplexing high-birefringence-fiber loop mirrors for discriminative measurement of temperature and strain," Appl. Opt. 48, 3994-3997 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited