OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1444–1454

GigaWaM—Next-Generation WDM-PON Enabling Gigabit Per-User Data Bandwidth

Kamau Prince, Timothy B. Gibbon, Roberto Rodes, Erling Hviid, Christian Ingemann Mikkelsen, Christian Neumeyr, Markus Ortsiefer, Enno Rönneberg, Jürgen Rosskopf, Peter Öhlén, Einar In de Betou, Björn Stoltz, Edgard Goobar, Jörgen Olsson, Richard Fletcher, Chris Abbott, Michael Rask, Nora Plappert, Gunther Vollrath, and I. Tafur Monroy

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1444-1454 (2012)

View Full Text Article

Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The “Gigabit access passive optical network using wavelength division multiplexing” project aims to implement 64-Gb/s data transmission over 20-km single-mode fiber. Per-user symmetric data rates of 1-Gb/s will be achieved using wavelength division multiplexing passive optical network (WDM-PON) architecture with a 1:64 user split per PON segment. Enabling technologies being developed within the scope of the project include tunable transceivers and athermal 50-GHz array waveguide grating multiplexer devices. The future-proof WDM architecture will enable convergence triple-play (telephony, TV, and broadband internet) service over existing optical infrastructure, and also facilitate cost-effective dense wavelength division multiplexing for metro aggregation and mobile backhaul networks.

© 2012 IEEE

Kamau Prince, Timothy B. Gibbon, Roberto Rodes, Erling Hviid, Christian Ingemann Mikkelsen, Christian Neumeyr, Markus Ortsiefer, Enno Rönneberg, Jürgen Rosskopf, Peter Öhlén, Einar In de Betou, Björn Stoltz, Edgard Goobar, Jörgen Olsson, Richard Fletcher, Chris Abbott, Michael Rask, Nora Plappert, Gunther Vollrath, and I. Tafur Monroy, "GigaWaM—Next-Generation WDM-PON Enabling Gigabit Per-User Data Bandwidth," J. Lightwave Technol. 30, 1444-1454 (2012)

Sort:  Year  |  Journal  |  Reset


  1. P. W. Shumate, "Fiber-to-the-home: 1977–2007," J. Lightw. Technol. 26, 1093-1103 (2008).
  2. J. Green, "Paving the last mile with glass," IEEE Spectrum 39, 13-14 (2002).
  3. H. Shinohara, "FTTH experiences in Japan (invited)," J. Opt. Netw. 6, 616-623 (2007).
  4. C.-H. Lee, "WDM-PON experiences in Korea (Invited)," J. Opt. Netw. 6, 451-464 (2007).
  5. E. B. Desurvire, "Capacity demand and technology challenges for lightwave systems in the next two decades," J. Lightw. Technol. 24, 4697-4712 (2006).
  6. D. Breuer, "Opportunities for next-generation optical access," IEEE Commun. Mag. 49, S16-S24 (2011).
  7. ,“Next generation connectivity: A review of broadband Internet transitions and policy from around the world,” Berkman Center for Internet & Society, Harvard Univ., Cambridge, MA, 2009.
  8. R. E. Wagner, Optical Fiber Telecommunications V B (Academic, 2008) pp. 431-436.
  9. ,“Fibre capacity limitations in access networks,” Analysys Mason, Edinburgh, U.K., Rep. XOF4G011V03, 2010.
  10. S. Cherry, "Edholm's law of bandwidth," IEEE Spectrum 41, 58-60 (2004).
  11. Google Inc.Ultra high-speed broadband is coming to Kansas City Kansas CityMO http://googleblog.blogspot.com/2011/03/ultra-high-speed-broadband-is-coming-to.html [Online]. Available:.
  12. D. Z. Chen, "Requirements for bend insensitive fibers for verizon's FiOS and FTTH applications," presented at the Opt. Fiber Commun. Conf. San DiegoCA (2008) Paper NTuC.
  13. T. Koonen, "Fiber to the home/fiber to the premises: What, where, and when?," Proc. IEEE 94, 911-934 (2006).
  14. Infonetics Research (Staff of Broadband Access research division)PON, FTTH, and DSL Aggregation Equipment and Subscribers CampbellCA (2011) http://www.infonetics.com/research.asp?cvg=Broadband.
  15. K. Grobe, J.-P. Elbers, "PON in adolescence: From TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
  16. S.-M. Lee, S.-G. Mun, M.-H. Kim, C.-H. Lee, "Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks," J. Lightw. Technol. 25, 271-276 (2007).
  17. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, "Next-generation optical access networks," J. Lightw. Technol. 25, 3428-42 (2007).
  18. GigaWaM website http://www.gigawam.com/.
  19. M. Pearson, "WDM-PON:A viable alternative for next generation FTTP," FTTH Prism 7, 26-30 (2010).
  20. Y. C. Chung, "Challenges Toward Practical WDM PON," presented at the Proc. Optoelectron. Commun. Conf. KaohsiungTaiwan (2006) Paper 6C41.
  21. H. Song, B.-W. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tut. 12, 112-123 (2010).
  22. S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture," Electron. Lett. 24, 344-346 (1988).
  23. Analysys Mason“FTTx roll-out and CAPEX in Developed Economies: Forecasts 2011–2016,” LondonU.K. (2011) http://www.researchandmarkets.com/reports/ 1790654/fttx_roll_out_and_capex_in_developed_economies .
  24. H.-J. Park, H. Yoon, T. Park, S.-J. Park, J. H. Kim, "Recent research activities of WDM-PON in korea," presented at the Opt. Fiber Commun. Conf. AnaheimCA (2007).
  25. FSAN website http://fsanweb.com/.
  26. Gigabit-Capable Passive Optical Networks (GPON): General Characteristics, ITU-T G.984.1, Mar., 2008.
  27. Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent Layer Specification, ITU-T. G.984.2, Mar., 2003.
  28. Gigabit-capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification, ITU-T. G.984.3, Mar., 2008.
  29. Gigabit-Capable Passive Optical Networks (G-PON): ONT Management and Control Interface Specification, ITU-T. G.984.4, Feb., 2008.
  30. 10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements, ITU-T. G.987.1, Jan., 2010.
  31. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, Y. C. Chung, "Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating," IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).
  32. T.-Y. Kim, S.-K. Han, "Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission," IEEE Photon. Technol. Lett. 18, 2350-2 (2006).
  33. F. Payoux, P. Chanclou, M. Moignard, R. Brenot, "Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA," Proc. Eur. Conf. Opt. Commun. (2005) pp. 455-456.
  34. M. Presi, R. Proietti, K. Prince, G. Contestabile, E. Ciaramella, "A 80 km reach fully passive WDM-PON based on reflective ONUs," Opt. Exp. 16, 19043-19048 (2008).
  35. Photonic Integrated Extended Metro and Access Network (PIEMAN) Website http://www.ist-pieman.org/.
  36. G. Talli, "Integrated metro and access network: PIEMAN," Proc. 12th Eur. Conf. Netw. Opt. Commun. pp. 493-500.
  37. Multi Service Access Everywhere (MUSE) Website http://www.ist-muse.org/.
  38. L. Banchi, R. Corsini, M. Presi, F. Cavaliere, E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, 1009-1011 (2010).
  39. S.-M. Lee, "Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes," IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).
  40. Z. Xu, "High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes," Opt. Exp. 15, 2953-2962 (2007).
  41. K. Iga, "Surface-emitting laser-its birth and generation of new optoelectronics field," IEEE J. Sel. Topics Quantum Electron. 6, 1201-1215 (2000).
  42. E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photon. 3, 27-29 (2009).
  43. T. B. Gibbon, "VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking," Opt. Fiber Technol. 17, 41-45 (2011).
  44. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, M. C. Amann, "1.55-μm VCSEL arrays for high-bandwidth WDM-PONs," IEEE Photon. Technol. Lett. 20, 291-293 (2008).
  45. K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, I. Tafur Monroy, "Free-running 1550-nm VCSEL for 10.7-Gb/s transmission in 99.7-km PON," J. Opt. Commun. Netw. 3, 399-403 (2011).
  46. C. Dragone, "An ${\rm N}*{\rm N}$ optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).
  47. K. Okamoto, H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response," Opt. Lett. 20, 43-45 (1995).
  48. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87-88 (1990).
  49. T. Saito, "100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength," Proc. Opt. Fiber Commun. Conf. (2003).
  50. J. Hasegawa, K. Nara, "Ultra-wide temperature range (${-}30-70^{\circ}$C) operation of athermal AWG module using pure aluminum plate," Proc. Opt. Fiber Commun Conf. (2006).
  51. T. Saito, "Temperature-insensitive (athermal) AWG modules," Furukawa Rev. 24, 29-33 (2003).
  52. K. Okamoto, "PLC technologies: present and future," presented at the Int. Soc. Opt. Eng. Denver, CO (2001) vol. 4352.
  53. H. Takahashi, "Recent progress on silica-based planar lightwave circuit for flexible and transparent photonic networks," Proc. Int. Conf. Photon. Switch. (2008) pp. 1-2.
  54. H. Takahashi, "High performance planar lightwave circuit devices for large capacity transmission," presented at the 37th Eur. Conf. Opt. Commun. GenevaSwitzerland (2011) Paper Th.12. Le Saleve.1.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited