OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1470–1474

Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis

Luca Vincetti and Valerio Setti

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1470-1474 (2012)


View Full Text Article

Acrobat PDF (1007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, a thorough numerical analysis of the confinement loss in kagome and tube lattice fibers is presented. The results show that the confinement loss strongly depends on the shape of the struts composing the core boundary and the cladding. This explains why confinement loss in kagome fibers is much higher than in tube lattice ones. In fact, the closer to a perfectly circular arc the struts, the lower the confinement loss. For this reason, struts shape must be carefully controlled during the fabrication process.

© 2012 IEEE

Citation
Luca Vincetti and Valerio Setti, "Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis," J. Lightwave Technol. 30, 1470-1474 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-10-1470


Sort:  Year  |  Journal  |  Reset

References

  1. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, "Generation and photonic guidance of multi-octave frequency combs," Science 318, 118-121 (2007).
  2. A. Argiros, S. G. Leon-Saval, J. Pla, A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square optical fibres," Opt. Exp. 16, 5642-5648 (2008).
  3. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, J. Auguste, "Ultraviolet guiding hollow-core photonic crystal fiber," Opt. Lett. 34, 2888-2890 (2009).
  4. C. Lai, B. You, J. Lu, T. Liu, J. Peng, C. Sun, H. Chang, "Modal characteristics of antiresonant reflecting pipe waveguide for terahertz waveguiding," Opt. Exp. 18, 309-322 (2009).
  5. J. Lu, C. Yu, H. Chen, Y. Li, C. Pan, C. Sun, "Terahertz air-core microstructured fiber," Appl. Phys. Lett. 31, 064105-1-064105-3 (2008).
  6. F. Benabid, P. J. Roberts, F. Couny, P. S. Light, "Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells," J. Eur. Opt. Soc. Rapid Publications 4, 1-9 (2009).
  7. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, "Generation of megawatt optical soliton in hollow-core photonic bandgap fiber," Science 310, 1702-1704 (2003).
  8. F. M. Cox, A. Argyros, M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Exp. 14, 4135-4140 (2006).
  9. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  10. P. Yeh, A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).
  11. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).
  12. K. J. Rowland, V. S. Afshar, T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Exp. 16, 17935-17951 (2008).
  13. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
  14. F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
  15. F. Couny, P. J. Roberts, T. A. Birks, F. Benabid, "Square-lattice large-pitch hollow-core photonic crystal fiber," Opt. Exp. 16, 20626-20636 (2008).
  16. L. Vincetti, V. Setti, "Waveguiding mechanism in tube lattice fibers," Opt. Exp. 18, 23133-23146 (2010).
  17. L. Vincetti, "Single-mode propagation in triangular tube lattice hollow-core terahertz fibers," Opt. Commun. 283, 979-984 (2010).
  18. S. Fevrier, B. Beaudou, P. Viale, "Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification," Opt. Exp. 18, 5142-5150 (2010).
  19. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, "Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber," Opt. Lett. 36, 669-671 (2011).
  20. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, E. Dianov, "Demonstration of a waveguide regime for a silica hollow core micorstructured optical fiber with a negative curvature of the core boundary in the spectral region ${>} 3.5$ m," Opt. Exp. 19, 1441-1448 (2011).
  21. L. Vincetti, V. Setti, M. Zoboli, "Confinement loss of tube lattice and Kagome fibers," presented at the Conf. Specialty Optical Fibers (SOF) TorontoCanada (2011).
  22. D. S. Wu, A. Argyros, S. G. Leon-Saval, "Reducing the size of hollow terahertz waveguides," J. Lightw. Technol. 29, 97-103 (2011).
  23. L. Vincetti, "Numerical analysis of plastic hollow core microstructured fiber for terahertz applications," Opt. Fiber Technol. 15, 398-401 (2009).
  24. M. Kharadly, J. Lewis, "Properties of dielectric-tube waveguides," Proc. IEE 116, 214-224 (1969).
  25. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
  26. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited