OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1475–1479

Bit Error Ratio Performance of 112 Gb/s PM-QPSK Transmission Systems

John C. Cartledge, John D. Downie, Jason E. Hurley, Xiaming Zhu, and Ioannis Roudas

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1475-1479 (2012)


View Full Text Article

Acrobat PDF (869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

For 112 Gb/s polarization-multiplexed quadrature-phase-shift-keying systems, the generalized Gaussian probability density function is used to quantify the impact of carrier phase estimation algorithms on the statistical properties of the resultant signal sample values and to obtain an estimate of the system bit error ratio when direct bit error counting is not feasible. The shape parameter in the probability density function is useful for distinguishing the performance of different signal processing algorithms and system configurations.

© 2012 IEEE

Citation
John C. Cartledge, John D. Downie, Jason E. Hurley, Xiaming Zhu, and Ioannis Roudas, "Bit Error Ratio Performance of 112 Gb/s PM-QPSK Transmission Systems," J. Lightwave Technol. 30, 1475-1479 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-10-1475


Sort:  Year  |  Journal  |  Reset

References

  1. K. Roberts, M. O. Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, C. Laperle, "Performance of dual-polarization QPSK for optical transport systems," J. Lightw. Technol. 27, 3546-3559 (2009).
  2. M. K. Varanasi, B. Aazhang, "Parametric generalized Gaussian density estimation," J. Acoust. Soc. Amer. 86, 1404-1415 (1989).
  3. S. B. Weinstein, "Estimation of small probabilities by linearization of the tail of a probability distribution function," IEEE Trans. Commun. COM-19, 1149-1155 (1971).
  4. M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE Sel. Areas Commun. SAC-2, 153-170 (1984).
  5. J, A. Domínguez-Molina, , J. A. , G. González-Farías, and R. Rodríguez-Dagnino, “A practical procedure to estimate the shape parameter in the generalized Gaussian distribution,”. [Online] www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf.
  6. N. Stojanovic, "Tail extrapolation in MLSE receivers using nonparametric channel model estimation," IEEE Trans. Signal Process. 57, 270-278 (2009).
  7. A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, F. Forghieri, "Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links," Proc. Eur. Conf. Opt. Commun. (2010).
  8. I. Fatadin, S. J. Savory, D. Ives, "Compensation of quadrature imbalance in an optical QPSK coherent receiver," IEEE Photon. Technol. Lett. 20, 1733-1735 (2008).
  9. H. Meyer, M. Moeneclaey, S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997).
  10. J. R. Treichler, B. G. Agee, "A new approach to multipath correction of constant modulus signals," IEEE Trans. Acoust., Speech, Signal Process. ASSP-31, 459-472 (1983).
  11. S. J. Savory, "Digital filters for coherent receivers," Opt. Exp. 16, 804-817 (2008).
  12. M. Morelli, U. Mengali, "Feedforward frequency estimation for PSK: A tutorial review," Eur. Trans. Telecommun. 9, 103-116 (1998).
  13. Z. Tao, L. Li, A. Isomura, T. Hoshida, J. C. Rasmussen, "Multiplier-free phase recovery for optical coherent receivers," Proc. Opt. Fiber Commun. Conf. (2008) pp. 1-3.
  14. S. Zhang, P. Y. Kam, C. Yu, J. Chen, "Decision-aided carrier phase estimation for coherent optical communications," J. Lightw. Technol. 28, 1597-1607 (2010).
  15. M. G. Taylor, "Phase estimation methods for optical coherent detection using digital signal processing," J. Lightw. Technol. 27, 901-914 (2009).
  16. I. Fatadin, D. Ives, S. J. Savory, "Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise," IEEE Photon. Technol. Lett. 22, 176-178 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited