OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 10 — May. 15, 2012
  • pp: 1492–1498

Multi-Wavelength Transmission of Hollow-Core Bragg Fiber With Modified Binary One-Dimensional Photonic Crystal Cladding

Lichao Shi, Wei Zhang, Jie Jin, Yidong Huang, and Jiangde Peng

Journal of Lightwave Technology, Vol. 30, Issue 10, pp. 1492-1498 (2012)

View Full Text Article

Acrobat PDF (2294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


To realize midinfrared multi-wavelength transmission within one octave, the modified binary one dimensional photonic crystal (MB-1DPC) is introduced to the hollow core Bragg fiber (HC-BF) as its cladding in this paper. Theoretical analysis shows that the MB-1DPC could provide wider higher-order PBGs than the B-1DPC; hence, the HC-BF with MB-1DPC cladding is prefer to realize multi-wavelength transmission within one octave by two adjacent higher-order PBGs. A HC-BF sample with MB-1DPC cladding was fabricated and measured. The fabricated fiber sample has two low loss transmission bands around 2137 cm-1 and 3016 cm-1, with transmission losses of 3.50 dB/m and 3.79 dB/m, respectively. The multi-wavelength transmission within one octave of the HC-BF with MB-1DPC cladding has great potential in midinfrared multi-wavelength applications, such as multi-species gas sensing and infrared gas lasers.

© 2012 IEEE

Lichao Shi, Wei Zhang, Jie Jin, Yidong Huang, and Jiangde Peng, "Multi-Wavelength Transmission of Hollow-Core Bragg Fiber With Modified Binary One-Dimensional Photonic Crystal Cladding," J. Lightwave Technol. 30, 1492-1498 (2012)

Sort:  Year  |  Journal  |  Reset


  1. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
  2. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic bandgap fibers," Science 301, 1702-1704 (2003).
  3. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, B. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Exp. 12, 717-723 (2004).
  4. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, Y. Fink, "Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns," Opt. Exp. 18, 15697-15703 (2010).
  5. F. Benabid, J. C. Knight, G. Antonopoulos, P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
  6. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, F. Couny, "Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
  7. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, "Generation and photonic guidance of multi-octave optical-frequency combs," Science 318, 1118-1121 (2007).
  8. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  9. C. Charlton, B. Temelkuran, G. Dellemann, B. Mizaikoff, "Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic bandgap hollow waveguides," Appl. Phys. Lett. 86, 194102-194103 (2005).
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
  11. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO$_{2}$ laser transmission," Nature 420, 650-653 (2002).
  12. P. Yeh, A. Yariv, E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).
  13. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
  14. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, W. Rudolph, "Mid-infrared gas filled photonic crystal fiber laser based on population inversion," Opt. Exp. 19, 2309-2316 (2011).
  15. G. Vienne, Y. Xu, C. Jakobsen, H.-J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).
  16. M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, A. Bjarklev, "Confinement loss spectral behavior in hollow-core Bragg fibers," Opt. Lett. 32, 3164-3166 (2007).
  17. A. Husakov, J. Herrmann, "Chirped multilayer hollow waveguides with broadband transmission," Opt. Express 17, 3025-3035 (2009).
  18. D. J. J. Hu, G. Alagappan, Y.-K. Yeo, P. P. Shum, P. Wu, "Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding," Opt. Exp. 18, 18671-18684 (2010).
  19. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Exp. 12, 1510-1517 (2004).
  20. L. Shi, W. Zhang, J. Jin, Y. Huang, J. Peng, "Transmission band control of hollow-core Bragg fiber and it application in gas sensing," Acta Physica Sinica. To be published.
  21. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001).
  22. M. Ibanescu, S. G. Johnson, M. Soljaccaronicacute, J. D. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, M. Skorobogatiy, "Analysis of mode structure in hollow dielectric waveguide fibers," Phys. Rev. E 67, 046608 (2003).
  23. K. J. Rowland, S. V. Afshar, T. M. Monro, "Novel low-loss bandgaps in all-silica Bragg fibers," J. Lightw. Technol. 26, 43-51 (2008).
  24. J.-I. Sakai, Y. Suzuki, "Equivalence between in-phase and antiresonant reflection conditions in Bragg fiber and its application to antiresonant reflecting optical waveguide-type fibers," J. Opt. Soc. Amer. B 28, 183-192 (2011).
  25. A. Mendez, T. F. Morse, Specialty Optical Fibers Handbook (Elsevier, 2007) pp. 353-355.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited