OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2062–2068

Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers

M. C. Paul, A. V. Kir'yanov, Yu. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martínez-Gamez, and J. L. Lucio-Martínez

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2062-2068 (2012)


View Full Text Article

Acrobat PDF (1690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Yb2O3doped yttrium-rich alumino-silicate nano-particles based D- and P- (pentagonal) shaped optical fibers with core diameter ~30–35 µm are fabricated using the conventional MCVD process and solution doping technique. Parameters of different stages of the fiber preforms fabrication are optimized to get uniform distributions of Al, Y, F, and Yb ions in the core region, ensured by the data of an EPMA analysis. In the presence of small amounts of fluorine, the size of nano-particles is maintained within 5–10 nm; the EDX data reveal that the nano-particles are rich in yttrium-alumino-silicate phase and are dispersed uniformly across the preforms core. The critical parameters of the processes involved at the fibers fabrication along with the nano-structuring and spectroscopic features are highlighted. It is shown experimentally that the drawn D- and P- shaped fibers support high laser efficiency (~80% at 976-nm pumping) and demonstrate negligible photodarkening.

© 2012 IEEE

Citation
M. C. Paul, A. V. Kir'yanov, Yu. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, J. K. Sahu, A. Martínez-Gamez, and J. L. Lucio-Martínez, "Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers," J. Lightwave Technol. 30, 2062-2068 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2062


Sort:  Year  |  Journal  |  Reset

References

  1. M. Fujii, M. Yoshida, S. Hayashi, D. K. Yamamoto, "Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+," J. Appl. Phys. 84, 4525-4531 (1998).
  2. J. St. John, J. L. Coffer, Y. Chen, R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999).
  3. C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, D. E. Hole, "Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films," Appl. Phys. Lett. 75, 2011-2013 (1999).
  4. W. T. Nichols, J. W. Keto, D. E. Henneke, J. R. Brock, G. Malyavanatham, M. F. Becker, H. D. Glicksman, "Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol," Appl. Phys. Lett. 78, 1128-1130 (2001).
  5. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, M. Guglielmi, "Sol-gel fabrication of rare-earth doped photonic components," J. Sol-Gel Sci. Technol. 19, 231-236 (2000).
  6. M. Rajala, K. Janka, P. Kykkänen, "An industrial method for nanoparticle synthesis with a wide range of compositions," Rev. Adv. Mater. Sci. 5, 493-499 (2003).
  7. J. E. Townsend, S. B. Poole, D. N. Payne, "Solution-doping technique for fabrication of rare-earth-doped optical fibers," Electron. Lett. 23, 329-331 (1987).
  8. W. Blanc, B. Dussardier, M. C. Paul, "Er doped oxide nanoparticles in silica based optical fibres," Glass Technol.—Eur. J. Glass Sci. Technol. A 50, 79-81 (2009).
  9. M. C. Paul, B. N. Upadhyaya, S. Das, A. Dhar, M. Pal, S. Kher, K. Dasgupta, S. K. Bhadra, R. Sen, "Study of the fabrication parameters of large core Yb2O3 doped optical fibre through solution doping technique," Opt. Commun. 283, 1039-1046 (2010).
  10. L. A. Riseberg, The Relevance of Nonradiative Transitions to Solid State Lasers (Plenum Press, 1980).
  11. A. Ubaldini, M. M. Carnasciali, "Raman characterisation of powder of cubic RE2O3 (RE ${=}$ Nd, Gd, Ddy, Tm, and Lu), Sc2O3 and Y2O3," J. Alloys Compounds 374–378, 374-378 (2008).
  12. P. Jander, W. S. Brocklesby, "Spectroscopy of yttria-alumina-silica glass doped with thulium and erbium," IEEE. J. Quantum Electron. 40, 509-512 (2004).
  13. Glass I: Interaction With Electromagnetic Radiation (Academic, 1978) pp. 5-89.
  14. M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, J. K. Sahu, "Yb2O3 doped YAG nano-crystallites in silica based core glass matrix of optical fiber preform," Mater. Sci. Eng. B 175, 108-119 (2010).
  15. N. H. Ray, "Composition-property relationships in inorganic oxide glasses," J. Non-Cryst. Solids 15, 423-434 (1974).
  16. Phase Separation in Glass (Academic, 1979) pp. 71.
  17. P. R. Watekar, S. Moon, A. Lin, S. Ju, W.-T. Han, "Linear and nonlinear optical properties of Si nanoparticles/Er-ions doped optical fiber," J. Lightw. Technol. 27, 568-575 (2009).
  18. P. Barua, E. H. Sekiya, K. Saito, A. J. Ikushima, "Influences of Yb3+ concentration on the spectroscopic properties of silica glass," J. Non-Cryst. Sol. 354, 4760-4764 (2008).
  19. T. C. Newell, P. Peterson, A. Gavrieldes, M. P. Sharma, "Temperature effects on the emission properties of Yb-doped optical fibers," Opt. Commun. 273, 256-259 (2007).
  20. A. S. Kurkov, V. S. Paramonov, O. I. Medvedkov, "Ytterbium fiber laser emitting at 1160 nm," Laser Phys. Lett. 3, 503-506 (2006).
  21. A. D. Guzman-Chavez, A. V. Kir'yanov, Yu. O. Barmenkov, N. N. Il'ichev, "Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation," Laser Phys. Lett. 4, 734-739 (2007).
  22. S. Yoo, M. P. Kalita, A. J. Boyland, A. S. Webb, R. J. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, M. Pal, "Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening," Opt. Commun. 283, 3423-3427 (2010).
  23. K. E. Mattsson, S. N. Knudsen, B. Cadier, T. Robin, "Photo darkening in ytterbium co-doped silica material," Proc. SPIE (2008).
  24. T. N. Haa, P. N. Thanga, L. N. Chunga, P. T. Ngaa, Ph. V. Hoia, L. V. Luatb, T. Th. Chama, V. Th. K. Lienc, C. Barthoud, P. Benallould, Proc. Int. Workshop Photon. Appl. (2004) pp. 147.
  25. T. Schaller, J. F. Stebbins, "The structural role of lanthanum and yttrium in aluminosilicate glasses: A Al-27 and O-17 MAS NMR study," J. Phys. Chem. B 102, 10690-10697 (1998).
  26. J. T. Kohli, J. E. Shelby, J. S. Frye, "A structural investigation of yttrium aluminosilicate glasses using Si-29 and Al-27 magic angle spinning nuclear-magnetic-resonance," Phys. Chem. Glasses 33, 73-78 (1992).
  27. A. A. Kaminskii, Laser Crystals (Springer, 1990).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited