OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2069–2076

Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications

Chitrarekha Chaudhari, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2069-2076 (2012)


View Full Text Article

Acrobat PDF (1075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present detailed design of a highly nonlinear chalcogenide core tellurite cladding composite microstructured fiber and dispersion tailoring in it. The fabrication procedure for the microstructured fiber is explained. Its applications to nonlinear phenomena are described with the experimental demonstration of the supercontinuum generation and the simulation of the parametric gain. It is observed that a supercontinuum spectrum of 20 dB bandwidth covering 0.80–2.40 µm is generated by this composite microstructure fiber when 1.85 µm pump is used. The simulation results show that the bandwidth over which the calculated parametric gain is more than 10 dB is 1680 nm, ranging from 1.04 to 2.72 µm.

© 2012 IEEE

Citation
Chitrarekha Chaudhari, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi, "Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications," J. Lightwave Technol. 30, 2069-2076 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2069


Sort:  Year  |  Journal  |  Reset

References

  1. V. Finazzi, T. M. Monro, D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003).
  2. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, Y. Ohishi, "Tellurite microstructure fibers with small hexagonal core for supercontinuum generation," Opt. Exp. 17, 12174-12182 (2009).
  3. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, F. G. Omenetto, "Over 4000 nm bandwidth of midIR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Exp. 16, 7161-7168 (2008).
  4. T. Hasegawa, T. Nagashima, N. Sugimoto, "Dispersion properties of Bi2O3-based high nonlinear optical fiber," J. Ceramic Soc. Jpn. 114, 224-226 (2006).
  5. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, B. J. Eggleton, "Investigation of self phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Exp. 13, 7637-7644 (2005).
  6. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, "Optical fiber nanowires and microwires: Fabrication and applications," Adv. Opt. Photon. 1, 107-161 (2009).
  7. G. Brambilla, F. Xu, X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 517-518 (2006).
  8. L. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, T. A. Birks, "Tapered fibers embedded in silica aerogel," Opt. Lett. 34, 2724-2726 (2009).
  9. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, "Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers," Opt. Exp. 18, 4549-4556 (2010).
  10. C. Chaudhari, T. Suzuki, Y. Ohishi, "Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers," J. Lightw. Technol. 27, 2095-2099 (2009).
  11. C. Chaudhari, T. Suzuki, Y. Ohishi, "Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band," Proc. Opt. Fiber Commun Conf. (2009).
  12. C. Chaudhari, T. Suzuki, Y. Ohishi, "Highly nonlinear chalcogenide core nanofiber and photonic crystal fiber showing zero dispersion at 1.55 µm," Proc. SPIE Eur. Opt. Optoelectron. (2009) pp. 735703-10.
  13. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, T. Misumi, "Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity," Opt. Exp. 17, 21608-21614 (2009).
  14. C. Chaudhari, T. Suzuki, Y. Ohishi, "Effect of cladding layer thickness on dispersion and nonlinearity of the chalcogenide core—Tellurite cladding composite nanofiber," Proc. 22nd Annu. Meet. IEEE Lasers Electro-Opt. Soc. Conf. (2009) pp. 725-726.
  15. W. S. Rodney, I. H. Malitson, T. A. King, "Refractive index of arsenic trisulfide," J. Opt. Soc. Amer. 48, 633-636 (1958).
  16. C. Chaudhari, T. Suzuki, Y. Ohishi, "Chromatic dispersions in highly nonlinear glass nanofibers," Proc. SPIE (2008) pp. 70561K-1-70561K-8.
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  18. T. N. Nguyen, T. Chartier, Q. Coulombier, P. Houizot, L. Brilland, F. Smektala, J. Troles, M. Thual, "Nonlinear characterisation of an AsSe chalcogenide holey fiber," Proc. Opto-Electron. Commun. Conf. (2009) pp. 13-17.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited