OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2097–2102

Tunable Radio Frequency Generation Using a Graphene-Based Single Longitudinal Mode Fiber Laser

Harith Ahmad, Farah Diana bt Muhammad, Mohd. Zamani Zulkifli, Amirah Abd Latif, and Sulaiman Wadi Harun

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2097-2102 (2012)


View Full Text Article

Acrobat PDF (637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel, simple, and short cavity design of single longitudinal mode (SLM) tunable erbium-doped fiber ring laser using a graphene-based saturable absorber is proposed and demonstrated as a tunable signal source. The SLM output is then mixed with another output signal from a tunable laser source (TLS) to generate tunable radio frequency (RF) signals. The tunable SLM fiber ring laser uses a short length of 1 m highly doped erbium-doped fiber as the gain medium. Graphene is used as a saturable absorber to generate the SLM operation, as opposed to the commonly used unpumped erbium-doped fiber. The tuning range of the fiber ring laser is determined by a tunable fiber Bragg grating, which can be tuned from 1547.88 to 1559.88 nm. A continuous wavelength spacing tuning range of 0.020–0.050 nm is obtained between the output of the SLM fiber ring laser and the TLS which is then mixed in a 6 GHz bandwidth optical-to-electrical convertor. This generates a corresponding RF signal of between 2.4 and 5.9 GHz with a low variation in output power. The current RF signal generation is limited by the frequency bandwidth of the optical-to-electrical convertor.

© 2012 IEEE

Citation
Harith Ahmad, Farah Diana bt Muhammad, Mohd. Zamani Zulkifli, Amirah Abd Latif, and Sulaiman Wadi Harun, "Tunable Radio Frequency Generation Using a Graphene-Based Single Longitudinal Mode Fiber Laser," J. Lightwave Technol. 30, 2097-2102 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2097


Sort:  Year  |  Journal  |  Reset

References

  1. S. Pan, J. Yao, "A wavelength switchable single longitudinal mode dual-wavelength erbium doped fiber laser for switchable microwave generation," Opt. Exp. 17, 5414-5419 (2009).
  2. R. C. Williamson, "RF photonics," J. Lightw. Technol. 26, 1145-1153 (2008).
  3. W. Liu, M. Jiang, D. Chen, S. He, "Dual wavelength single longitudinal mode polarization maintaining fiber laser and its application in microwave generation," J. Lightw. Technol. 27, 4455-4459 (2009).
  4. J. Capmany, D. Novak, "Microwave photonics combine two worlds," Nature Photon. 1, 319-330 (2007).
  5. P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).
  6. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  7. R. Drori, M. Einat, D. Shur, E. Jerby, G. Rosenman, R. Advani, R. J. Temkin, C. Pralong, "Demonsration of microwave generation by a ferroelectric cathode tube," Appl. Phys. Lett. 74, 335-337 (1999).
  8. W. Li, J. Yao, "Microwave generation based on optical domain microwave frequency octupling," IEEE Photon. Technol. Lett. 22, 24-26 (2010).
  9. Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE. Trans. Microw. Theory Tech. 45, 1296-1300 (1997).
  10. Z. Li, M. Li, H. Chi, X. Zhang, J. Yao, "Photonic generation of phase coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating," IEEE Microw. Wireless Compon. Lett. 21, 694-696 (2011).
  11. R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase loop using double quantum-well laser diodes," Electron. Lett. 28, 82-83 (1992).
  12. J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron 33, 989-998 (1997).
  13. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
  14. T. H. Wu, J. Wu, Y. J. Chiul, "Novel ultrawide-band (UWB) photonic generation through photodetection and cross absorption modulation in a single electroabsorption modulator," Opt. Exp. 18, 3379-3384 (2010).
  15. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, C. Bélisle, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).
  16. Y. Yao, X. F. Chen, Y. T. Dai, S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
  17. X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual wavelength single longitudinal mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).
  18. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
  19. S. Baunel, O. Brox, J. Kresnel, G. Sahin, B. Sartouis, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).
  20. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter-wave signals," Electron. Lett. 28, 2309-2310 (1992).
  21. J. Sun, Y. Dai, X. Chen, Y. Zhang, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
  22. G. Chen, D. Huang, X. Zhang, H. Cao, "Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber," Opt. Lett. 33, 554-556 (2008).
  23. D. Chen, H. Fu, W. Liu, Y. Wei, S. He, "Dual wavelength single longitudinal mode erbium doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation," Electron. Lett. 44, 459-461 (2008).
  24. G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, P. Millan, "High frequency microwave signal generation using dual wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability," Opt. Commun. 283, 5165-5168 (2010).
  25. X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong, G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers," IEEE Photon. Technol. Lett. 11, 1292-1294 (1999).
  26. H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, S. W. Harun, "Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs," J. Modern Opt. 56, 1768-1773 (2009).
  27. A. A. Latif, M. Z. Zulkifli, N. A. Awang, "A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism," Laser Phys. 20, 2006-2010 (2010).
  28. S. Pan, X. Zhao, C. Lou, "Switchable single longitudinal mode dual wavelength fiber ring laser using hybrid gain medium," Opt. Lett. 3, 764-766 (2008).
  29. X. He, D. N. Wang, C. R. Liao, "Tunable and switchable dual wavelength single longitudinal mode erbium doped fiber lasers," J. Lightw. Technol. 29, 842-849 (2011).
  30. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photon. 4, 611-622 (2010).
  31. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode lockers for fiber lasers functioned with evanescent field interaction," App. Phys. Lett. 96, 051122-1-051122-3 (2010).
  32. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength tunable, dissipative, soliton fiber laser," App. Phys. Lett. 96, 111112-1-111112-3 (2010).
  33. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," App. Phys. Lett. 98, 073106-1-073106-3 (2011).
  34. W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W.-C. Xu, "Graphene-based, 50 nm wideband tunable passively Q-switched fiber laser," Laser Phys. Lett. 9, 54-58 (2011).
  35. L. Wei, D. P. Zhou, H. Y. Fen, W. K. Liu, "Graphene-based Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range," IEEE Photon. Technol. Lett. 24, 309-311 (2012).
  36. H. Ahmad, M. Z. Zulkifli, A. A. Latif, M. H. Jemangin, S. S. Chong, S. W. Harun, "Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium doped fiber," J. Modern Opt. 59, 1-6 (2012).
  37. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, "Broadband graphene polarizer," Nature Photon. 5, 411-415 (2011).
  38. B. Shuve, J. H. Thywissen, "Enhanced Pauli blocking of light scattering in a trapped Fermi gas," J. Phys. B: At. Mol. Opt. Phys. 43, 15301-15308(8) (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited