OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2110–2116

All-Optical Steering of Light Through Nonlinear Twin-Core Photonic Crystal Fiber Coupler at 850 nm

T. Uthayakumar, R. Vasantha Jayakantha Raja, and K. Porsezian

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2110-2116 (2012)

View Full Text Article

Acrobat PDF (1423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We intent to investigate the dynamics and steering characteristics of an optical pulse propagation through photonic crystal fiber coupler (PCFC) using the projection operator method (POM) at 850 nm. For the proposed study, we begin with the analysis of silica PCFC design. From the proposed design, we examine the propagation of Gaussian pulse through PCFC, by means of coupled nonlinear Schrödinger equations. By employing POM, we derive the equations of motion describing the dynamics of the pulse parameters, called collective variables (CVs), namely the amplitude, pulse width, phase and chirp. The corresponding results obtained through POM are compared and verified numerically by split step Fourier method (SSFM). Furthermore, we propose a novel chloroform filled PCF structure that operates as a single mode at 850 nm, featuring an enhanced dispersion and nonlinearity for efficient switching, thus enabling to accomplish switching at a low input pulse power and low loss over shorter distances. Efficient optical pulse switching through both the designs are demonstrated through the simulation of the transmission curve. From the transmission curve, we infer that efficient switching can be achieved at relatively low input power in the proposed chloroform filled PCF.

© 2012 IEEE

T. Uthayakumar, R. Vasantha Jayakantha Raja, and K. Porsezian, "All-Optical Steering of Light Through Nonlinear Twin-Core Photonic Crystal Fiber Coupler at 850 nm," J. Lightwave Technol. 30, 2110-2116 (2012)

Sort:  Year  |  Journal  |  Reset


  1. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. 18, 1580-1583 (1982).
  2. D. D. Gusovskii?, E. M. Dianov, A. A. Mai?er, V. B. Neustruev, E. I. Shklovskii?, I. A. Shcherbakov, "Nonlinear light transfer in tunnel-coupled optical waveguides," Sov. J. Quantum Electron. 15, 1523 (1985).
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  4. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, C. N. lronside, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 61, 147-149 (1992).
  5. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, W. Sohler, "All-optical switching in lithium niobate directional couplers with cascaded nonlinearity," Opt. Lett. 21, 940-942 (1996).
  6. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, M. Ibsen, "Nonlinear self-switching and mulitple gap-soliton formation in a fiber Bragg grating," Opt. Lett. 23, 328-330 (1998).
  7. S. R. Vigil, Z. Zhou, B. K. Canfield, J. Tostenrude, M. G. Kuzyk, "Dual-core single-mode polymer fiber coupler," J. Opt. Soc. Amer. B 15, 895-900 (1998).
  8. J. R. Salgueiro, Y. S. Kivshar, "Nonlinear plasmonic directional couplers," Appl. Phys. Lett. 97, 1-3 (2010).
  9. X. Yu, M. Liu, Y. Chung, M. Yan, P. Shum, "Coupling coefficient of two-core microstructured optical fiber," Opt. Commun. 260, 164-169 (2006).
  10. J. M. Dudley, J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nat. Photon. 3, 8590 (2009).
  11. K. P. Hansen, "Introduction to nonlinear photonic crystal fibers," J. Opt. Fiber Commun. Rep. 2, 226-254 (2005).
  12. K. R. Khan, T. X. Wu, D. N. Christodoulides, G. I. Stegeman, "Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler," Opt. Exp. 16, 9417-9428 (2008).
  13. J. Li, K. Duan, Y. Wang, X. Cao, Y. Guob, X. Lin, "Design of a single-polarization single-mode photonic crystal fiber double-core coupler," Optik 120, 490-496 (2009).
  14. B. Fu, S. G. Li, Y. Y. Yao, L. Zhang, M. Y. Zhang, "Design of two kinds of dual-core high birefringence and high coupling degree photonic crystal fibers," Opt. Commun. 283, 4064-4068 (2010).
  15. A. Martinez, F. Cuesta, J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2010).
  16. I. D. Chremmos, G. Kakarantzas, N. K. Uzunoglu, "Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler," Opt. Commun. 251, 339-345 (2005).
  17. M. Aliramezani, S. M. Nejad, "Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation," Opt. LaserTech. 42, 1209-1217 (2010).
  18. A. Tonello, M. Szpulak, J. Olszewski, S. Wabnitz, A. B. Aceves, W. Urbanczyk, "Nonlinear control of soliton pulse delay with asymmetric dual-core photonic crystal fibers," Opt. Lett. 34, 920-922 (2009).
  19. K. R. Khan, T. X. Wu, "Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler," IEEE J. Sel. Topics Quantum Electron. 14, 752-757 (2008).
  20. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  21. R. V. J. Raja, K. Porsezian, K. Nithyanandan, "Modulational-instability-induced supercontinuum generation with saturable nonlinear response," Phys. Rev. A 82, 1-6 (2010).
  22. H. Zhang, S. Chang, J. Yuan, D. Huang, "Supercontinuum generation in chloroform-filled photonic crystal fiber," Optik 121, 783-787 (2010).
  23. D. Anderson, "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A 27, 3135-3145 (1983).
  24. T. Uthayakumar, C. P. Jisha, K. Porsezian, V. C. Kuriakose, "Switching dynamics of a two-dimensional nonlinear directional coupler in a photopolymer," J. Opt. 12, 1-8 (2010).
  25. J. N. Kutz, P. Holmes, S. G. Evangelides, J. P. Gordon, "Hamiltonian dynamics of dispersion-managed breathers," J. Opt. Soc. Am. B 15, 87-96 (1998).
  26. P. K. A. Wai, K. Nakkeeran, "On the uniqueness of Gaussian ansatz parameters equations: Generalized projection operator method," Phys. Lett. A 332, 239-243 (2004).
  27. R. V. J. Raja, K. Porsezian, S. K. Varshney, S. Sivabalan, "Modeling photonic crystal fiber for efficient soliton pulse propagation at 850 nm," Opt. Commun. 283, 5000-5006 (2010).
  28. A. B. Moubissi, K. Nakkeeran, P. T. Dinda, T. C. Kofane, "Non-lagrangian collective variable approach for optical solitons in fibres," J. Phys. A: Math. Gen. 34, 129-136 (2001).
  29. A. Kamagate, P. Grelu, P. T. Dinda, J. M. Soto-Crespo, N. Akhmediev, "Stationary and pulsating dissipative light bullets from a collective variable approach," Phys. Rev. E 79, 1-11 (2009).
  30. B. Kalithasan, K. Nakkeeran, K. Porsezian, P. T. Dinda, N. Mariyappa, "Ultra-short pulse propagation in birefringent fibers the projection operator method," J. Opt. A: Pure Appl. Opt. 10, 1-7 (2008).
  31. K. Nakkeeran, P. K. A. Wai, "Generalized projection operator method to derive the pulse parameters equations for the nonlinear Schrödinger equation," Opt. Commun. 244, 377-382 (2005).
  32. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. Paek, G. Yang, "Photonic crystal fiber coupler," Opt. Lett. 27, 812-814 (2002).
  33. R. Boesch, P. Stancioff, C. R. Willis, "Hamiltonian equations for multiple-collective-variable theories of nonlinear Klein-Gordon equations: A projection-operator approach," Phys. Rev. B 38, 6713-6735 (1988).
  34. R. V. J. Raja, K. Senthilnathan, K. Porsezian, K. Nakkeeran, "Efficient pulse compression using tapered photonic crystal fiber at 850 nm," IEEE J. Quantum Electron. 46, 1795-1803 (2010).
  35. K. Saitoh, M. Koshiba, "Full-vectorial Imaginary-Distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  36. Comsol Multiphysics 3.4 (2008) www.comsol.com.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited