OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2134–2142

Confined and Propagating Modes of Microstructured Optical Fibers With Three-Dimensional Geometry Variation

Adam Mock and Waylin Wing

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2134-2142 (2012)


View Full Text Article

Acrobat PDF (2284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Microstructured optical fiber inline cavity designs are presented with lengths less than 60 µm, mode volumes less than 3 (λ0/n)3, and Q factors exceeding 3000. The device geometries are consistent with the fiber postprocessing capabilities of focused ion beam or femtosecond micromachining. The devices are based on introducing a longitudinally periodic hole array into a microstructured optical fiber. The micromachined fiber dispersion is calculated using the 3-D finite-different time-domain method. Bandgap frequencies, confined cavity mode frequencies, and quality factors are presented. Application of the device as a fast-response-time refractometer is explored, and sensitivities of 150 nm per refractive index unit are predicted.

© 2012 IEEE

Citation
Adam Mock and Waylin Wing, "Confined and Propagating Modes of Microstructured Optical Fibers With Three-Dimensional Geometry Variation," J. Lightwave Technol. 30, 2134-2142 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2134


Sort:  Year  |  Journal  |  Reset

References

  1. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
  2. P. S. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
  3. M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O'Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, D. J. Richardson, SPIE Optics East (SPIE, 2005).
  4. A. R. Bhagwat, A. L. Gaeta, "Nonlinear optics in hollow-core photonic bandgap fibers," Opt. Exp. 16, 5035-5047 (2006).
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. S. J. Russell, "Anomolous dispersion in photonic crystal fibers," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
  6. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Exp. 11, 818-823 (2003).
  7. S. M. Hendrickson, T. B. Pittman, J. D. Franson, "Holey fiber microcavities," presented at the Conf. Lasers Electro-Opt. Tech. Dig. San JoseCA (2008) Paper QWB4.
  8. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, V. Sandoghdar, "A scanning microcavity for in situ control of single-molecule emission," Appl. Phys. Lett. 97, 021107-1-021107-3 (2010).
  9. G. Meltz, W. W. Morey, W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
  10. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
  11. X. Fang, C. R. Liao, D. N. Wang, "Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing," Opt. Lett. 35, 1007-1009 (2010).
  12. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Exp. 15, 6690-6695 (2007).
  13. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, S. Huntington, "Micromachining structured optical fibers using focused ion beam milling," Opt. Lett. 32, 1575-1577 (2007).
  14. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, "Compact microfiber bragg gratins with high-index contrast," Opt. Lett. 36, 3115-3117 (2011).
  15. S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, Y. Wang, "Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser," Opt. Exp. 18, 5496-5503 (2010).
  16. M. Ding, M. N. Zervas, G. Brambilla, "A compact broadband microfiber Bragg grating," Opt. Exp. 19, 15621-15626 (2011).
  17. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, T. Miyazaki, Y. Sugimoto, "Cavity formation on an optical nanofiber using focused ion beam milling technique," Opt. Exp. 19, 14040-14050 (2011).
  18. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, "Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry—Pérot etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
  19. E. Yablonovitch, T. J. Gmitter, "Photonic band structure: The face-centered-cubic case," Phys. Rev. Lett. 63, 1950-1953 (1989).
  20. A. Taflove, S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  21. W. Kuang, W. J. Kim, A. Mock, J. D. O'Brien, "Propagation loss of line-defect photonic crystal slab waveguides," IEEE J. Sel. Topics Quantum Electron. 12, 1183-1195 (2006).
  22. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton Univ. Press, 1995).
  23. S. Dey, R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Padé approximation," IEEE Microw. Guided Wave Lett. 8, 415-417 (1998).
  24. A. Mock, J. D. O'Brien, "Direct extraction of large quality factors and resonant frequencies from Padé interpolated resonance spectra," Opt. Quantum Electron. 40, 1187-1192 (2008).
  25. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
  26. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, "Zero-cell photonic crystal nanocavity laser with quantum dot gain," Appl. Phys. Lett. 97, 191108-1-191108-3 (2010).
  27. Q. Song, H. Cao, S. T. Ho, G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109-1-061109-3 (2009).
  28. B.-S. Song, S. Noda, T. Asano, Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
  29. W.-C. Du, X.-M. Tao, H.-Y. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
  30. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings," Opt. Exp. 14, 6394-6398 (2006).
  31. A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997).
  32. A. Mock, J. D. O'Brien, "Strategies for reducing the out-of-plane radiation in photonic crystal heterostructure microcavities for continuous wave laser applications," J. Lightw. Technol. 28, 1042-1050 (2010).
  33. K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Exp. 10, 670-684 (2002).
  34. Y. Akahane, T. Asano, B.-S. Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Exp. 13, 1202-1214 (2005).
  35. D. Englund, I. Fushman, J. Vu?kovi?, "General recipe for designing photonic crystal cavities," Opt. Exp. 13, 5961-5975 (2005).
  36. Y. Takahashi, H. Hagino, T. Yoshinori, B.-S. Song, T. Asano, S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Exp. 15, 17206-17213 (2007).
  37. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Augeste, D. Pagnoux, W. Blanc, B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007).
  38. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Exp. 13, 8224-8231 (2006).
  39. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett. 34, 322-324 (2009).
  40. Y. L. Hoo, W. W. Jin, C. Shi, H. L. Ho, D. N. Wang, S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
  41. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
  42. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited