OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2143–2150

Wavelength Interrogator for Optical Sensors Based on a Novel Thermo-Optic Tunable Filter in SOI

Vittorio M. N. Passaro, Andrei V. Tsarev, and Francesco De Leonardis

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2143-2150 (2012)


View Full Text Article

Acrobat PDF (1419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, the wavelength interrogation of optical sensors by novel thermo-optic tunable filters with multiple partially reflected slanted mirrors in silicon-on-insulator (SOI) technology is presented. The tunable filter is used both for tunable band selection of broadband light source interrogating the optical sensors, as well as for precise detection of interrogation optical wavelength. New interrogator design is numerically studied by 2-D finite-difference time-domain and finite-element method for a compact structure. The investigation demonstrates the performance of an interrogator on SOI, 1 cm long, having about 1 pm wavelength resolution and 1 ms scanning over 40 nm range at 1550 nm, with an operation power of about 16 mW.

© 2012 IEEE

Citation
Vittorio M. N. Passaro, Andrei V. Tsarev, and Francesco De Leonardis, "Wavelength Interrogator for Optical Sensors Based on a Novel Thermo-Optic Tunable Filter in SOI," J. Lightwave Technol. 30, 2143-2150 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2143


Sort:  Year  |  Journal  |  Reset

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).
  2. V. M. N. Passaro, F. Dell'Olio, B. Casamassima, F. De Leonardis, "Guided-wave optical biosensors," Sensors 7, 508-536 (2007).
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, "Silicon-on-insulator microring resonator for sensitive and label-free biosensing," Opt. Exp. 15, 7610-7615 (2007).
  4. Y. Sano, T. Yoshino, "Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors," J. Lightw. Technol. 21, 132-139 (2003).
  5. G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, C. P. Grover, "Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings," Opt. Lett. 29, 2222-2224 (2004).
  6. H. Guo, G. Xiao, N. Mrad, J. Yao, "Simultaneous interrogation of a hybrid FBG/LPG sensor pair using a monolithically integrated echelle diffractive grating," J. Lightw. Technol. 27, 2100-2104 (2009).
  7. C. Jáuregui, A. Quintela, J. M. López-Higuera, "Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating," Opt. Lett. 29, 676-678 (2004).
  8. G. Li, T. Guo, H. Zhang, H. Gao, J. Zhang, B. Liu, Sh. Yuan, G. Kai, X. Dong, "Fiber grating sensing interrogation based on an InGaAs photodiode linear array," Appl. Opt. 46, 283-286 (2007).
  9. A. G. Simpson, K. Zhou, L. Zhang, L. Everall, I. Bennion, "Optical sensor interrogation with a blazed fiber Bragg grating and a charge-coupled device linear array," Appl. Opt. 43, 33-40 (2004).
  10. V. Bhatia, A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
  11. M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, "Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair," IEEE Photon. Technol. Lett. 20, 1290-1292 (2008).
  12. H. Y. Fu, H. L. Liu, W. H. Chung, H. Y. Tam, "A novel fiber Bragg grating sensor configuration for long-distance quasi-distributed measurement," IEEE Sensors J. 8, 1598-1602 (2008).
  13. A. V. Tsarev, F. De Leonardis, V. M. N. Passaro, "Compact interrogator for fiber optic Bragg sensors based on acousto-optic filter formed by photonic crystal rows of air holes," Opt. Lett. 36, 3756-3758 (2011).
  14. A. V. Tsarev, "Compact acousto-optic filter with beam expanders constituted by photonic crystal rows of airholes," Opt. Lett. 35, 4033-4035 (2010).
  15. A. V. Tsarev, "Finite-difference time-domain simulation of compact acousto-optic filters based on multireflection beam expanding," Quantum Electron. 37, 393-398 (2007).
  16. V. M. N. Passaro, F. Magno, A. V. Tsarev, "Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides," Opt. Exp. 13, 3429-3437 (2005).
  17. A. V. Tsarev, F. De Leonardis, V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Exp. 16, 3101-3113 (2008).
  18. F. De Leonardis, A. V. Tsarev, V. M. N. Passaro, "Optical properties of new wide heterogeneous waveguides with thermo-optical shifters," Opt. Exp. 16, 21333-21338 (2008).
  19. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).
  20. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
  21. P. Pottier, S. Mastroiacovo, R. M. De La Rue, "Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides," Opt. Exp. 14, 5617-5633 (2006).
  22. A. V. Tsarev, "Power beam splitter based on photonic crystal row of holes and Brewster effect in SOI waveguides," Opt. Lett. 35, 968-970 (2010).
  23. A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers," Quantum Electron. 38, 445-451 (2008).
  24. A. V. Tsarev, "New wide strip and grating loaded quasi-single-mode waveguide on SOI," Opt. Exp. 17, 13095-13101 (2009).
  25. A. V. Tsarev, "Optical properties of wide strip and grating loaded single mode channel waveguides," Quantum Electron. 39, 1169-1174 (2009).
  26. Rsoft Photonic CAD Suite, ver. 8.0, single license (2007) www.rsoftdesign.com.
  27. Comsol Multiphysics by COMSOL, ver. 3.2, single license © (2005).
  28. W. Liu, M. Asheghi, "Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures," J. Appl. Phys. 98, 123523-1-123523-6 (2005).
  29. M. Asheghi, K. Kurabayashi, R. Kasnavi, K. E. Goodson, "Thermal conduction in doped single-crystal silicon films," J. Appl. Phys. 91, 5079-5088 (2002).
  30. X. Yang, A. C. To, R. Tian, "Anomalous heat conduction behavior in thin finite-size silicon nanowires," Nanotechnology 21, 155704 (2010).
  31. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
  32. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Exp. 15, 1567-1578 (2007).
  33. A. V. Tsarev, V. M. N. Passaro, F. Magno, Silicon Photonics (Res. Signpost publisher, 2006) pp. 47-77.
  34. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, "Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity," IEEE Photon. Technol. Lett. 9, 940-942 (1997).
  35. F. Qing, S. Junfeng, Z. Gang, Y. Mingbin, L. Yuliang, L. Guo-Qiang, K. Dim-Lee, "Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform," IEEE Photon. Technol. Lett. 21, 319-321 (2009).
  36. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Topics Quantum Electron. 16, 316-324 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited