OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 13 — Jul. 1, 2012
  • pp: 2216–2225

A Rational-Fraction Dispersion Model for Efficient Simulation of Dispersive Material in FDTD Method

Lin Han, Dong Zhou, Kang Li, Xun Li, and Wei-Ping Huang

Journal of Lightwave Technology, Vol. 30, Issue 13, pp. 2216-2225 (2012)


View Full Text Article

Acrobat PDF (1799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel rational-fraction dispersion model is proposed for simulation of optical properties of arbitrary linear dispersive media over a wide wavelength range. A generally applicable method is proposed for estimating the parameters of this model. It is demonstrated that the rational-fraction dispersion model can fit the relative permittivity data of a material accurately and efficiently in a wide wavelength range. The new model is implemented in the finite-difference time-domain method and is applied as a powerful and computationally efficient tool for simulating nano-particles of dispersive materials in a wide wavelength range of light.

© 2012 IEEE

Citation
Lin Han, Dong Zhou, Kang Li, Xun Li, and Wei-Ping Huang, "A Rational-Fraction Dispersion Model for Efficient Simulation of Dispersive Material in FDTD Method," J. Lightwave Technol. 30, 2216-2225 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-13-2216


Sort:  Year  |  Journal  |  Reset

References

  1. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  2. S. H. Chang, S. Gray, G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Exp. 13, 3150-3165 (2005).
  3. T. W. Lee, S. Gray, "Subwavelength light bending by metal slit structures," Opt. Exp. 13, 9652-9659 (2005).
  4. A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
  5. D. F. Kelley, R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag. 44, 792-797 (1996).
  6. T. Laroche, C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).
  7. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, S. K. Gray, "Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons," Opt. Exp. 15, 18119-18129 (2007).
  8. S. K. Gray, T. Kupka, "Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68, 045415 (2003).
  9. A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
  10. F. Hao, P. Nordlander, "Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles," Phys. Chem. Lett. 446, 115-118 (2007).
  11. A. Vial, T. Laroche, "Comparison of gold and silver dispersion laws suitable for FDTD simulations," Appli. Phys. B: Lasers Opt. 93, 139-143 (2008).
  12. K. Y. Jung, F. L. Teixeira, "Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures," IEEE Photon. Technol. Lett. 19, 586-588 (2007).
  13. K. H. Lee, I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progr. Electromagn. Res. 116, 441-456 (2011).
  14. M. Han, R. W. Dutton, S. Fan, "Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs," IEEE Microw. Wireless Comp. Lett. 16, 119-121 (2006).
  15. I. Udagedara, M. Premaratne, I. D. Rukhlenko, H. T. Hattori, G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials," Opt. Exp. 17, 21179-21190 (2009).
  16. P. Etchegoin, E. Le Ru, M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
  17. N. Okada, J. B. Cole, "Effective permittivity for FDTD calculation of plasmonic materials," Micromachines 3, 168-179 (2012).
  18. A. Vial, "Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method," J. Opt. A: Pure Appl. Opt. 9, 745 (2007).
  19. M. Hamidi, F. Baida, A. Belkhir, O. Lamrous, "Implementation of the critical points model in a SFM-FDTD code working in oblique incidence," J. Phys. D Appl. Phys. 44, 245101 (2011).
  20. B. Gustavsen, A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Del. 14, 1052-1061 (1999).
  21. R. X. Zeng, J. H. Sinsky, "Modified rational function modeling technique for high speed circuits," pp. 1951-1954 (2006).
  22. M. H. Richardson, D. L. Formenti, "Parameter estimation from frequency response measurements using rational fraction polynomials," pp. 167-186 (1982).
  23. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by simulated annealing," Sci. 220, 671 (1983).
  24. P. B. Johnson, R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
  25. S. Foteinopoulou, J. Vigneron, C. Vandenbem, "Optical near-field excitations on plasmonic nanoparticle-based structures," Opt. Exp. 15, 4253-4267 (2007).
  26. W. Pernice, F. Payne, D. Gallagher, "Simulation of metallic nano-structures by using a hybrid FDTD-ADI subgridding method," Proc. Int. Conf. Electromag. Adv. Applicat. (ICEAA 2007) (2007) pp. 633-636.
  27. J. A. Roden, S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Lett. 27, 334-338 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited