OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 14 — Jul. 15, 2012
  • pp: 2337–2344

Lateral Load Measurements Based on a Distributed Sensing System of Optical Frequency-Domain Reflectometry Using Long-Length Fiber Bragg Gratings

Daichi Wada, Hideaki Murayama, and Hirotaka Igawa

Journal of Lightwave Technology, Vol. 30, Issue 14, pp. 2337-2344 (2012)

View Full Text Article

Acrobat PDF (1208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we demonstrate the measurements of lateral loads in a distributed manner using long-length fiber Bragg gratings (FBGs) based on optical frequency-domain reflectometry (OFDR). Birefringence is induced at specific areas of the long-length FBGs by lateral compression. The distributions of the Bragg peaks were monitored by the OFDR sensing system, from which we calculated the applied lateral loads. Theoretical calculation results confirmed the validity of the experimental results. In addition, position-wise beat signals of the power of the obtained spectra were observed with smaller lateral loads that were not sufficient to provide two distinguished Bragg peaks. This unique phenomenon for the frequency-domain reflectometry scheme is explained theoretically. We proposed a method for utilizing the beat cycle to calculate smaller lateral loads.

© 2012 IEEE

Daichi Wada, Hideaki Murayama, and Hirotaka Igawa, "Lateral Load Measurements Based on a Distributed Sensing System of Optical Frequency-Domain Reflectometry Using Long-Length Fiber Bragg Gratings," J. Lightwave Technol. 30, 2337-2344 (2012)

Sort:  Year  |  Journal  |  Reset


  1. M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, R. Yamauchi, "Simultaneous measurement of temperature and strain using PANDA fiber grating," Proc. 12th Int. Conf. Opt. Fiber Sens. Tech. Dig. Postconf. Edition (1997) pp. 170-173.
  2. E. Chehura, S. W. James, R. P. Tatam, "Temperature and strain discrimination using a single tilted fibre Bragg grating," Opt. Commun. 275, 344-347 (2007).
  3. J. Echevarria, A. Quintela, C. Jauregui, J. M. Lopez-Higuera, "Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination," IEEE Photon. Technol. Lett. 13, 696-698 (2001).
  4. M. S. Muller, L. Hoffmann, A. Sandmair, A. W. Koch, "Full strain tensor treatment of fiber Bragg grating sensors," IEEE J. Quantum Electron. 45, 547-553 (2009).
  5. R. Gafsi, M. A. El-Sherif, "Analysis of induced-birefringence effects on fiber Bragg gratings," Opt. Fiber Technol. 6, 299-323 (2000).
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1463 (1997).
  7. H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, K. Kageyama, "Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model)," J. Solid Mech. Mater. Eng. 2, 1-11 (2008).
  8. H. Murayama, K. Kageyama, H. Naruse, A. Shimada, K. Uzawa, "Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures," J. Intell. Mater. Syst. Struct. 14, 3-13 (2001).
  9. M. Volanthen, H. Geiger, J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightw. Technol. 15, 2076-2082 (1997).
  10. K. Hotate, K. Kajiwara, "Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function," Opt. Exp. 16, 7881-7887 (2008).
  11. H. Igawa, H. Murayama, T. Nakamura, I. Yamaguchi, K. Kageyama, K. Uzawa, D. Wada, I. Ohsawa, M. Kanai, K. Omichi, "Measurement of distributed strain and load identification using 1500 mm gauge length FBG and optical frequency domain reflectometry," Proc. SPIE 7503, 75035l-750354 (2009).
  12. H. Murayama, K. Kageyama, K. Uzawa, K. Ohara, H. Igawa, "Strain monitoring of a single lap joint with embedded fiber-optic distributed sensors," Struct. Health Monit. 11, 325-344 (2012).
  13. D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, K. Omichi, "Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber Bragg grating based on optical frequency domain reflectometry," Smart Mater. Struct. 20, 085028-1-085028-8 (2011).
  14. R. R. J. Maier, W. N. MacPherson, J. S. Barton, "Distributed transverse load sensing in polarization maintaining fibres using Rayleigh backscatter," Proc. SPIE 7503, 75030C-1-75030C-4 (2009).
  15. R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, "Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre," Electron. Lett. 32, 1223-1224 (1996).
  16. A. Zhang, B. Guan, X. Tao, H. Tam, "Experimental and theoretical analysis of fiber Bragg gratings under lateral compression," Opt. Commun. 206, 81-87 (2002).
  17. V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, "Cure monitoring of smart composites using fiber Bragg grating based embedded sensors," Sens. Actuators 79, 153-161 (2000).
  18. J. Botis, L. Humbert, F. Colpo, P. Giaccari, "Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials," Opt. Laser. Eng. 43, 491-510 (2005).
  19. V. Slowik, E. Schlattner, T. Klink, "Experimental investigation into early age shrinkage of cement paste by using fibre Bragg gratings," Cement Concrete Comp. 26, 473-479 (2004).
  20. J. A. Guemes, J. M. Menendez, "Response of Bragg grating fiber-optic sensors when embedded in composite laminates," Compos. Sci. Technol. 62, 959-966 (2002).
  21. B. Qi, M. Bannister, X. Liu, A. Michie, L. Rajasekera, B. Ashton, "Response of an embedded fibre Bragg grating to thermal and mechanical loading in a composite laminate," Mater. Forum 27, 93-100 (2004).
  22. J. Paul, B. K. A. Ngoi, L. P. Zhao, "Enhanced wavelength tuning of laterally loaded FBG strain sensors through optimization of the pressure transmitting system," Sens. Actuators 120, 416-423 (2005).
  23. M. LeBlanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, "Transverse load sensing by use of pi-phase shifted fiber Bragg gratings," Opt. Lett. 24, 1091-1093 (1999).
  24. C. M. Lawrence, D. V. Nelson, E. Udd, "Measurement of transverse strains with fiber Bragg gratings," Proc. SPIE—Int. Soc. Opt. Eng. 3042, 218-228 (1997).
  25. Y. L. Lo, J. S. Sirkis, K. T. Ritchie, "A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber," Smart Mater. Struct. 4, 327-333 (1995).
  26. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Sr. Moore, D. A. Hare, C. F. Batten, D. C. Jegley, "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133-142 (2001).
  27. T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited