OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 14 — Jul. 15, 2012
  • pp: 2382–2387

Side-Hole Dual-Core Photonic Crystal Fiber for Hydrostatic Pressure Sensing

Gufeng Hu and Daru Chen

Journal of Lightwave Technology, Vol. 30, Issue 14, pp. 2382-2387 (2012)

View Full Text Article

Acrobat PDF (1090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We propose a novel side-hole dual-core photonic crystal fiber (SHDC-PCF) which is used as the sensing element of the hydrostatic pressure sensor. There are two solid fiber cores separated by one small air hole in the triangular lattice photonic crystal structure region. Two large air holes are employed in the cross-section outside of the photonic crystal structure region, which essentially provides a built-in transducing mechanism to enhance the pressure-induced index change for the SHDC-PCF. The mode coupling between two fiber cores of the SHDC-PCF under different hydrostatic pressure is numerically investigated. The SHDC-PCF based pressure sensor is simply formed by using a segment of SHDC-PCF spliced to two single mode fibers. Our simulations show that there is a linear relationship between the hydrostatic pressure applied on the SHDC-PCF and the peak wavelength shift of the sensor output spectrum. A hydrostatic pressure sensor based on a 10-cm SHDC-PCF has shown a sensing range from 0 to 500 MPa and a sensitivity of 32 pm/MPa. The performances of hydrostatic pressure sensors based on SHDC-PCFs with different structure parameters are presented.

© 2012 IEEE

Gufeng Hu and Daru Chen, "Side-Hole Dual-Core Photonic Crystal Fiber for Hydrostatic Pressure Sensing," J. Lightwave Technol. 30, 2382-2387 (2012)

Sort:  Year  |  Journal  |  Reset


  1. J. C. Knight, "Photonic crystal fibers," Nature. 424, 847-851 (2003).
  2. T. A. Birks, J. C. Knight, P. S. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  3. A. Huttunen, P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Exp. 13, 627-635 (2005).
  4. S. Yang, Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Exp. 14, 3015-3023 (2006).
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
  6. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, "Highly birefringent index-guiding photonic crystal fiber," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
  7. M. J. Steel, R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
  8. D. Chen, L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol. 25, 2700-2705 (2007).
  9. D. Chen, L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
  10. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, C. M. B. Cordeiro, "Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes," Opt. Lett. 35, 544-546 (2010).
  11. D. Chen, G. Wu, "Highly birefringent photonic crystal fiber based on a double-hole unit," Appl. Opt. 49, 1682-1686 (2010).
  12. J. C. Knight, D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Exp. 15, 15365-15376 (2007).
  13. H. Dobb, K. Kalli, D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
  14. X. Dong, P. Shum, H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on sagnac interferometer," Appl. Phys. Lett. 90, 151113-151115 (2007).
  15. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001).
  16. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, H. Thienpont, "Sensitivity of holey fiber based sensors," Proc. 5th Int. Conf. Transparent Optical Networks, 2nd Eur. Symp. Photonic Crystals (2003) pp. 340-343.
  17. M. Szpulak, W. Urbanczyk, T. Martynkien, J. Wójcik, W. J. Bock, "Temperature sensitivity of the photonic crystal holey fibers," Proc. 11th Conf. Opt. Fibers Their Applications VIII (2003) pp. 108-114.
  18. G. E. Town, W. Yuan, R. McCosker, O. Bang, "Microstructured optical fiber refractive index sensor," Opt. Lett. 35, 856-858 (2010).
  19. W. Yuan, G. E. Town, O. Bang, "Refractive index sensing in an all-solid twin-core photonic bandgap fiber," IEEE Sens. J. 10, 1192-1199 (2010).
  20. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett. 34, 322-324 (2009).
  21. D. Chen, G. Hu, L. Chen, "Dual-core photonic crystal fiber for hydrostatic pressure sensing," IEEE Photon. Technol. Lett. 23, 1851-1853 (2011).
  22. H. M. Xie, P. Dabkiewicz, R. Ulrich, K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett. 11, 333-335 (1986).
  23. J. Wojcik, P. Mergo, W. Urbanczyk, W. J. Bock, "Possibilities of application of the side-hole circular core fiber in monitoring of high pressures," IEEE Trans. Instrum. Meas. 47, 805-808 (1998).
  24. M. Szpulak, T. Martynkien, W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt. 43, 4739-4744 (2004).
  25. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Exp.. 18, 15113-15121 (2010).
  26. D. Chen, G. Hu, M.-L. V. Tse, H. Y. Tam, "Dual-core side-hole fiber for pressure sensing based on intensity detection," J. of Electromagn. Waves and Appl. 25, 775-784 (2011).
  27. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  28. C. Wu, B. O. Guan, Z. Wang, X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightw.Technol. 28, 1392-1397 (2010).
  29. W. P. Huang, "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Amer. A. 11, 963-983 (1994).
  30. J. S. Chiang, N. H. Sun, S. C. Lin, W. F. Liu, "Analysis of an ultrashort PCF-based polarization splitter," J. Lightw. Technol. 28, 707-713 (2010).
  31. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer," Appl. Opt. 47, 2835-2839 (2008).
  32. H. Y. Fu, C. Wu, M. L. V. Tse, L. Zhang, K. C. D. Cheng, H. Y. Tam, B. O. Guan, C. Lu, "High pressure sensor based on photonic crystal fiber for downhole application," Appl. Opt. 49, 2639-2644 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited