OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 15 — Aug. 1, 2012
  • pp: 2405–2414

Theory, Figures of Merit, and Design Recipe of the Plasmonic Structure Composed of a Nano-Slit Aperture Surrounded by Surface Corrugations

Guangyuan Li, Feng Xiao, Kun Li, Kamal Alameh, and Anshi Xu

Journal of Lightwave Technology, Vol. 30, Issue 15, pp. 2405-2414 (2012)


View Full Text Article

Acrobat PDF (2320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We theoretically investigate a widely-used plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations. A systematical semi-analytical theory in form of two nested coupled-mode models is developed to provide intuitive physical pictures. Based on the theory, figures of merit (FoMs) of the structures designed for normal and for oblique incidence/beaming are defined for the first time to incorporate the interlinks among key structural parameters, making global optimization simple and efficient. Both the theory and the FoMs are quantitatively validated with exhaustive calculations and shown to be highly accurate on performance prediction and structural optimization. With the theory and the FoMs, an efficient, effective and standard recipe is introduced for optimal structure design. We believe this work will help to understand the mechanisms of and to facilitate the design of such a structure in various configurations used in various applications.

© 2012 IEEE

Citation
Guangyuan Li, Feng Xiao, Kun Li, Kamal Alameh, and Anshi Xu, "Theory, Figures of Merit, and Design Recipe of the Plasmonic Structure Composed of a Nano-Slit Aperture Surrounded by Surface Corrugations," J. Lightwave Technol. 30, 2405-2414 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-15-2405


Sort:  Year  |  Journal  |  Reset

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. I. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
  3. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnol. 13, 429-432 (2002).
  4. S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, T. W. Ebbesen, "Mechanisms for extraordinary optical transmission through bull's eye structures," Opt. Exp. 19, 10 429-10 442 (2011).
  5. T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, "Si nano-photodiode with a surface plasmon antenna," Jpn. J. Appl. Phys. 44, L364-L366 (2005).
  6. Z. Yu, G. Veronis, S. Fan, M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
  7. R. D. Bhat, N. C. Panoiu, S. R. Brueck, R. M. Osgood, "Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating," Opt. Exp. 16, 4588-4596 (2008).
  8. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, B. Nabet, "Integrated plasmonic lens photodetector," Appl. Phys. Lett. 94, 083501 (2009).
  9. G. Zheng, X. Cui, C. Yang, "Surface-wave enabled darkfield aperture for background suppression during weak signal detection," Proc. Natl. Acad. Sci. 107, 9043-9048 (2010).
  10. G. Zheng, C. Yang, "Improving weak-signal identification via predetection background suppression by a pixel-level, surface-wave-enabled dark-field aperture," Opt. Lett. 35, 2636-26 348 (2010).
  11. E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nat. Photonics 2, 161-164 (2008).
  12. M. Consonni, J. Hazart, G. Lerondel, "Fabry-pérot type enhancement in plasmonic visible nanosource," Appl. Phys. Lett. 94, 051105 (2009).
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
  14. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, C. K. Lee, "Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings," Opt. Exp. 14, 3503-3511 (2006).
  15. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
  16. S. Kim, H. Kim, Y. Lim, B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
  17. H. Kim, J. Park, B. Lee, "Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings," Opt. Lett. 34, 2569-2571 (2009).
  18. B. Lee, S. Kim, H. Kim, Y. Lim, "The use of plasmonics in light beaming and focusing," Prog. Quant. Electron. 34, 47-87 (2010).
  19. Y. C. Jun, K. C. Y. Huang, M. L. Brongersma, "Plasmonic beaming and active control over fluorescent emission," Nat. Commun. 2, 283 (2011).
  20. N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
  21. N. Yu, "Plasmonics for laser beam shaping," IEEE Trans. Nanotechnol. 9, 11-29 (2010).
  22. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
  23. A. Degiron, T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Exp. 12, 3694-3700 (2004).
  24. P. Lalanne, J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
  25. G. Gay, O. Alloschery, B. V. D. Lesegno, C. O'Dwyer, J. Weiner, H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel," Nat. Phys. 2, 262-267 (2006).
  26. J. Olkkonen, K. Kataja, D. G. Howe, "Light transmission through a high index dielectric hole in a metal film surrounded by surface corrugations," Opt. Exp. 14, 11 506-11 511 (2006).
  27. C. M. Wang, C. C. Chao, H. I. Huang, B. Ung, Y. Sheng, J. Y. Chang, "Transmission enhancement through a metallic slit assisted by low scattering loss corrugations," Opt. Comm. 281, 2996-2999 (2008).
  28. O. T. A. Janssen, H. P. Urbach, G. W. 't Hooft, "Giant optical transmission of a subwavelength slit optimized using the magnetic field phase," Phys. Rev. Lett. 99, 043902 (2007).
  29. O. Mahboub, S. C. Palacios, C. Genet, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, T. W. Ebbesen, "Optimization of bull's eye structures for transmission enhancement," Opt. Exp. 18, 11 292-11 299 (2010).
  30. Y. X. Cui, S. L. He, Y. Okuno, "Giant optical transmission through a metallic nano-slit achieved by the optimization of the groove periodicity and other parameters," Proc. 2008 Int. Workshop Metamaterials (2008) pp. 236-239.
  31. Y. X. Cui, S. L. He, "A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves," Opt. Exp. 17, 13 995-14 000 (2009).
  32. L. Cai, G. Li, Z. Wang, A. Xu, "Interference and horizontal Fabry-Perot resonance on extraordinary transmission through a metallic nano-slit surrounded with grooves," Opt. Lett. 35, 127-129 (2010).
  33. L. Cai, G. Li, F. Xiao, Z. Wang, A. Xu, "Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence," Opt. Exp. 18, 19 495-19 503 (2010).
  34. G. Li, L. Cai, F. Xiao, Y. Pei, A. Xu, "A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors," Opt. Exp. 18, 10 487-10 499 (2010).
  35. G. Li, F. Xiao, L. Cai, K. Alameh, A. Xu, "Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition," New J. Phys. 13, 073045 (2011).
  36. E. Silberstein, P. Lalanne, J. P. Hugonin, Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Amer. A 18, 2865-2875 (2001).
  37. X. Wei, A. J. H. Wachters, H. P. Urbach, "Finite-element model for three-dimensional optical scattering problems," J. Opt. Soc. Amer. A 24, 866-881 (2007).
  38. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
  39. B. Ung, Y. Sheng, "Interference of surface waves in a metallic nanoslit," Opt. Exp. 15, 1182-1190 (2007).
  40. P. Lalanne, J. P. Hugonin, J. C. Rodier, "Approximate model for surface-plasmon generation at slit apertures," J. Opt. Soc. Amer. A 23, 1608-1615 (2006).
  41. P. Lalanne, J. P. Hugonin, H. Liu, B. Wang, "A microscopic view of the electromagnetic properties of sub-$\lambda$ metallic surfaces," Surf. Sci. Rep. 64, 453-469 (2009).
  42. H. Liu, P. Lalanne, X. Yang, J. P. Hugonin, "Surface plasmon generation by subwavelength isolated objects," IEEE J. Sel. Top. Quantum Electron. 14, 1522-1529 (2008).
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  44. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, L. Martín-Moreno, "Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film," New J. Phys. 10, 105017 (2008).
  45. J. W. Mu, H. Zhang, W. P. Huang, "Design of waveguide Bragg gratings with strong index corrugations," J. Lightw. Technol. 26, 1596-1601 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited