Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 15,
  • pp. 2421-2426
  • (2012)

Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission

Not Accessible

Your library or personal account may give you access

Abstract

A compact two-mode (de)multiplexer (TM-MUX) based on Si nanowire for mode-division multiplexing is designed. The TM-MUX is composed of two multimode interference (MMI) waveguides and a butterfly-shape tapered phase shifter between two MMI waveguides. Numerical simulations show that the designed device is compact compared with conventional-mode (de)multiplexer and operates as a TM-MUX in the whole C-band. In addition, we show that the designed TM-MUX has relatively good fabrication tolerance.

© 2012 IEEE

PDF Article
More Like This
Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter

Liangshun Han, Song Liang, Hongliang Zhu, Lijun Qiao, Junjie Xu, and Wei Wang
Opt. Lett. 40(4) 518-521 (2015)

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, and Chunlai Xue
Opt. Express 22(5) 5781-5786 (2014)

Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission

Nobutomo Hanzawa, Kuimasa Saitoh, Taiji Sakamoto, Takashi Matsui, Kyozo Tsujikawa, Masanori Koshiba, and Fumihiko Yamamoto
Opt. Express 21(22) 25752-25760 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved