OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 15 — Aug. 1, 2012
  • pp: 2442–2446

High Extinction Ratio Circular Polarizer With Conical Double-Helical Metamaterials

Zhe Zhao, Dingshan Gao, Changjing Bao, Xu Zhou, Tingting Lu, and Lin Chen

Journal of Lightwave Technology, Vol. 30, Issue 15, pp. 2442-2446 (2012)

View Full Text Article

Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Recently, circular polarizer with cylindrical double-helical metamaterials has been proposed to broaden the operation band of cylindrical single-helical metamaterials, but its extinction ratio is deteriorated. In this paper, we proposed a circular polarizer with conical double-helical metamaterials, which have a large extinction ratio of 83:1, more than four times higher than that of cylindrical double-helical metamaterials. Furthermore, we gave a qualitative interpretation about this phenomenon through analyzing the interaction between two helical wires in one unit cell of the circular polarizer.

© 2012 IEEE

Zhe Zhao, Dingshan Gao, Changjing Bao, Xu Zhou, Tingting Lu, and Lin Chen, "High Extinction Ratio Circular Polarizer With Conical Double-Helical Metamaterials," J. Lightwave Technol. 30, 2442-2446 (2012)

Sort:  Year  |  Journal  |  Reset


  1. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
  2. C. M. Soukoulis, S. Linden, M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
  3. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1, 41-48 (2006).
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
  5. A. Alu, N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623-1-016623-9 (2005).
  6. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
  7. J. B. Pendry, D. Schurig, D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
  8. Y. Q. Ye, S. L. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett. 96, 203501 (2010).
  9. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, M. Wegener, "Strong optical activity from twisted-cross photonic metamaterials," Opt. Lett. 34, 2501-2503 (2009).
  10. H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, P. N. Prasad, "Chiral poly (fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: Plasmonically and structurally enhanced chirality," J. Am. Chem. Soc. 132, 17346-17348 (2010).
  11. M. Decker, M. W. Klein, M. Wegener, S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
  12. D. H. Kwon, P. L. Werner, D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Exp. 16, 11802-11807 (2008).
  13. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
  14. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B. 79, 035407-1-035407-6 (2009).
  15. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett. 102, 023901-1-023901-4 (2009).
  16. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science 325, 1513-1515 (2009).
  17. J. K. Gansel, M. Wegener, S. Burger, S. Linden, "Gold helix photonic metamaterials: A numerical parameter study," Opt. Exp. 18, 1059-1069 (2010).
  18. Z. Y. Yang, M. Zhao, P. X. Lu, Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Opt. Lett. 35, 2588-2590 (2010).
  19. Z. Y. Yang, M. Zhao, Y. F. Lu, "Similar structures, different characteristics: Optical performances of circular polarizers with single- and double-helical metamaterials," J. Lightw. Technol. 28, 3415-3421 (2010).
  20. Z. Y. Yang, M. Zhao, P. X. Lu, "How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?," Opt. Exp. 19, 4255-4260 (2011).
  21. Y. Yang, Z. Y. Yang, S. X. Li, M. Zhao, "Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials," Opt. Exp. 19, 10886-10894 (2011).
  22. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys. 114, 185-200 (1994).
  23. P. Harms, R. Mittra, W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317-1324 (1994).
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
  25. J. D. Kraus, R. J. Marhefka, Antennas: For All Applications (McGraw-Hill, 2003) pp. 251-258.
  26. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited