OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 15 — Aug. 1, 2012
  • pp: 2472–2481

Resonant Hydrophones Based on Coated Fiber Bragg Gratings

Massimo Moccia, Marco Consales, Agostino Iadicicco, Marco Pisco, Antonello Cutolo, Vincenzo Galdi, and Andrea Cusano

Journal of Lightwave Technology, Vol. 30, Issue 15, pp. 2472-2481 (2012)


View Full Text Article

Acrobat PDF (1233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we report on recent experimental results obtained with fiber-Bragg-grating (FBG) hydrophones for underwater acoustic detection. The optical hydrophones under investigation consist of FBGs coated with ring-shaped polymers of different size and mechanical properties. The coating materials were selected and designed in order to provide mechanical amplification, via judicious choice of their acousto-mechanical properties and by exploiting selected resonances occurring in different frequency ranges. Our underwater acoustic measurements, carried out within the range 4–35 kHz, reveal the resonant behavior of these optical hydrophones, as well as its dependence on the coating size and type of material. These experimental data are also in good agreement with our previously published numerical results. By comparison with bare (i.e., uncoated) FBGs, responsivity enhancements of up to three orders of magnitude were found, demonstrating the effectiveness of polymeric coatings in tailoring the acoustic response of FBG-based hydrophones.

© 2012 IEEE

Citation
Massimo Moccia, Marco Consales, Agostino Iadicicco, Marco Pisco, Antonello Cutolo, Vincenzo Galdi, and Andrea Cusano, "Resonant Hydrophones Based on Coated Fiber Bragg Gratings," J. Lightwave Technol. 30, 2472-2481 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-15-2472


Sort:  Year  |  Journal  |  Reset

References

  1. J. H. Cole, R. L. Johnson, P. G. Bhuta, "Fiber optic detection of sound," J. Acoust. Soc. Amer. 62, 1136-1138 (1977).
  2. J. A. Bucaro, H. D. Dardy, E. F. Carome, "Fiber optic hydrophone," J. Acoust. Soc. Amer. 62, 1302-1304 (1977).
  3. J. R. Lee, H. Tsuda, "Sensor application of fibre ultrasonic waveguide," Meas. Sci. Technol. 17, 645-652 (2006).
  4. G. Wild, S. Hinckley, "Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art," IEEE Sensors J. 8, 1184-1192 (2008).
  5. B. Culshaw, G. J. Thursby, D. Betz, B. L. Sorazu, "The detection of ultrasound using fiber-optic sensors," IEEE Sensors J. 8, 1360-1367 (2008).
  6. G. Thursby, B. Sorazu, D. Betz, W. Staszewski, B. Culshaw, "The use of fibre optic sensors for damage detection and location in structural materials," Appl. Mech. Mater. 1–2, 191-196 (2004).
  7. C. Kirkendall, A. Dandridge, "Overview of high performance fibre optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
  8. N. Takahashi, A. Hirose, S. Takahashi, "Underwater acoustic sensor with fiber Bragg grating," Opt. Rev. 4, 691-694 (1997).
  9. D. C. Betz, G. Thursby, B. Culshaw, W. Staszewski, "Acousto-ultrasonic sensing using fiber Bragg gratings," Smart Mater. Struct. 12, 122-128 (2003).
  10. D. C. Betz, G. Thursby, B. Culshaw, W. Staszewski, "Identification of structural damage using multifunctional Bragg grating sensors: I. Theory and implementation," Smart Mater. Struct. 15, 1305-1312 (2006).
  11. H. Tsuda, E. Sato, T. Nakajima, H. Nakamura, T. Arakawa, H. Shiono, M. Minato, H. Kurabayashi, A. Sato, "Acoustic emission measurement using a strain-insensitive fiber Bragg grating sensor under varying load conditions," Opt. Lett. 34, 2942-2944 (2009).
  12. P. Wierzba, P. Karioja, "Modelling of active fiber Bragg grating underwater acoustic sensor," Proc. SPIE (2004) pp. 348-354.
  13. D. J. Hill, P. J. Nash, "In-water acoustic response of a coated DFB fibre laser sensor," Proc. SPIE (2000) pp. 33-36.
  14. S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, G. Hardy, "A fibre laser hydrophone," Proc. SPIE (2005) pp. 627-630.
  15. N. Takahashi, K. Yoshimura, S. Takahashi, K. Imamura, "Development of an optical fiber hydrophone with fiber Bragg grating," Ultrasonics 8, 581-585 (2000).
  16. S. Tanaka, H. Yokosuka, N. Takahashi, "Temperature-stabilized fiber Bragg grating underwater acoustic sensor array using incoherent light," Proc. SPIE (2005) pp. 699-702.
  17. S. Tanaka, H. Yokosuka, N. Takahashi, "Temperature-independent fiber Bragg grating underwater acoustic sensor array using incoherent light," Acoust. Sci. Technol. 27, 50-52 (2006).
  18. N. Takahashi, K. Tetsumura, S. Takahashi, "Multipoint detection of an acoustical wave in water with WDM fiber Bragg grating sensor," Proc. SPIE (1999) pp. 270-273.
  19. H. Yokosuka, S. Tanaka, N. Takahashi, "Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control," Acoust. Sci. Technol. 26, 456-458 (2005).
  20. S. Goodman, A. Tikhomirov, S. Foster, "Pressure compensated distributed feedback fibre laser hydrophone," Proc. SPIE (2008) pp. 700426-1-700426-4.
  21. W. Zhang, Y. Liu, F. Li, H. Xiao, "Fiber laser hydrophone based on double diaphragms: Theory and experiment," J. Lightw. Technol. 26, 1349-1352 (2008).
  22. L. Ma, H. Yongming, L. Hong, H. Zhengliang, "DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity," IEEE Photon. Technol. Lett 21, 1280-1282 (2009).
  23. S. Goodman, S. Foster, J. van Velzen, H. Mendis, "Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia," Proc. SPIE (2009) pp. 75034L1-75034L4.
  24. S. Foster, A. Tikhomirov, J. van Velzen, "Towards a high performance fiber laser hydrophone," J. Lightw. Technol. 29, 1335-1342 (2011).
  25. G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall, "Distributed feedback fiber laser strain sensors," IEEE Sensors J. 8, 1161-1172 (2008).
  26. D. J. Hill, G. A. Cranch, "Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating," Electron. Lett. 35, 1268-1269 (1999).
  27. G. B. Hocker, "Fiber optic acoustic sensors with composite structure: An analysis," Appl. Opt. 18, 3679-3683 (1979).
  28. G. B. Hocker, "Fiber-optic acoustic sensors with increased sensitivity by use of composite structures," Opt. Lett. 4, 320-321 (1979).
  29. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt. 18, 1445-1448 (1979).
  30. Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, X. Dong, "Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating," Electron. Lett. 36, 564-566 (2000).
  31. A. Cusano, S. D'Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, M. Giordano, "Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating," Sens. Trans. J. 82, 1450-1457 (2007).
  32. S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, A. Laudati, "Underwater acoustic sensors based on fiber Bragg gratings," Sensors 9, 4446-4454 (2009).
  33. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, A. Cusano, "Resonant hydrophones based on coated fiber Bragg gratings—Part I: Numerical analysis," Proc. SPIE (2011) pp. 775384-1-775384-4.
  34. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, A. Cusano, "Resonant behavior of coated fiber Bragg gratings as underwater acoustic sensors," Opt. Exp. 19, 18842-18860 (2011).
  35. M. Moccia, M. Consales, A. Iadicicco, M. Pisco, A. Cutolo, A. Cusano, "Resonant hydrophones based on coated fiber Bragg gratings. Part II: Experimental analysis," Proc. SPIE (2011) pp. 775383-1-775383-4.
  36. Huntsman Advanced Materials www.huntsmanservice.com/Product_Finder/ui/PSDetailCompositeList.do?pInfoSBUId=9&PCId=1663.
  37. http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PU&MinorID=1.
  38. T. Pritz, "The Poisson's loss factor of solid viscoelastic materials," J. Sound Vibrat. 306, 790-802 (2007).
  39. A. Sorathia, Polyurethane-Epoxy Interpenetrating Polymer Network Acoustic Damping Material U.S. Patent 5?331?062 (1994).
  40. F. A. Khayyat, P. Stanley, "The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range ${-}10^{\circ}$C to 70°C," J. Phys. D: Appl. Phys. 11, 1237-1247 (1978).
  41. F. J. P. Chaves, Application of adhesive bonding in PVC windows M.Sc Thesis University of PortoPortoPortugal (2005) http://www.scribd.com/doc/37203644/MSc-Thesis.
  42. B. Möller Chemie, Technical Data: PUR and Epoxy http://www.bm-chemie.de/content/de/download/pub/Elektrogiessharze_12_03_2009.pdf.
  43. J. Preisig, "Acoustic propagation considerations for underwater acoustic communications network development," Proc. 1st ACM Int. Workshop Underwater Netw. (2006) pp. 1-5.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited