OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 15 — Aug. 1, 2012
  • pp: 2532–2541

Investigation of the Interaction of Modal and Chromatic Dispersion in VCSEL–MMF Channels

Jose M. Castro, Rick Pimpinella, Bulent Kose, and Brett Lane

Journal of Lightwave Technology, Vol. 30, Issue 15, pp. 2532-2541 (2012)


View Full Text Article

Acrobat PDF (1796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We develop a complete theoretical model to explain the interaction of modal and chromatic dispersion in optical channels based on vertical cavity surface emitting lasers and multimode fibers. We propose an original formalism to estimate the magnitude of this interaction on the channel bandwidth and mode partition noise power penalty within traditional communication system link models. Simulation results are experimentally validated.

© 2012 IEEE

Citation
Jose M. Castro, Rick Pimpinella, Bulent Kose, and Brett Lane, "Investigation of the Interaction of Modal and Chromatic Dispersion in VCSEL–MMF Channels," J. Lightwave Technol. 30, 2532-2541 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-15-2532


Sort:  Year  |  Journal  |  Reset

References

  1. IEEE 40/100G Ethernet Standard IEEE 802.3.ba (2010).
  2. ANSI-INCITS 479 Physical Interface -5 Standard, Fiber Channel Committee of INCITS, ANSI (2011).
  3. TIA Specification for 850-nm Laser Optimized, OM4 MMF TIA-492AAAD (2009).
  4. D. Gloge, E. A. I. Marcatalli, "Multimode theory of graded-core fibers," Bell Syst. Tech. J. 52, 1563-1578 (1973).
  5. E. S. E. Golowich, "A new modal power distribution measurement for high-speed short-reach optical systems," J. Lightw. Technol. 22, 457-468 (2004).
  6. R. Olshansky, "Pulse broadening caused by deviations from the optimal index profile," OSA Appl. Opt. 15, 782-788 (1976).
  7. G. P. Agrawal, Fiber-Optics Communication Systems (Wiley, 2002).
  8. G. Yabre, "Comprehensive theory of dispersion in graded-index optical fibers," J. Lightw. Technol. 18, 166-177 (2000).
  9. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Kluwer, 2000).
  10. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 1995).
  11. D. G. Cunningham, http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification De.
  12. D. Dolfi, http://www.ieee802.org/3/10G_study/public/email_attach/new_isi.pdf Proposal to Modify the ISI Penalty in the current GbE spreadsheet.
  13. P. Pepeljugoski, "Develop of system specification for laser optimized 50-μm multimode fiber for multigigabit short-wavelength LANs," J. Lightw. Technol. 21, 1256-1275 (2003).
  14. P. Pepeljugoski, "Modeling and simulation of next-generation multimode fiber links," J. Lightw. Technol. 21, 1242-1255 (2003).
  15. A. Gholami, D. Molin, P. Sillard, "Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions," IEEE Photon. Technol. Lett. 21, 645-647 (2009).
  16. A. Gholami, D. Molin, P. Sillard, "Physical modeling of 10 GbE optical communication systems," J. Lightw. Technol. 29, 115-123 (2011).
  17. R. Pimpinella, "Dispersion compensated multimode fiber," Proc. 60th Int. Wire and Cables Sym. and Conf. (2011) pp. 1-10.
  18. TIA DMD Measurement of Multimode Fiber in the Time Domain TIA-455-220-A (2003).
  19. H. Li, K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer-Verlag, 2003).
  20. J. M. Trewhella, "Evolution of optical subassemblies in IBM data communication transceivers," IBM J. Res. Dev. 47, 251-256 (2003).
  21. L. Raddatz, I. H. White, D. G. Cunningham, "An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links," J. Lightw. Technol. 16, 324-331 (1998).
  22. F. Pampaloni, J. Enderlein, Cornell Library"Gaussian, Hermite–Gaussian, and Laguerre–Gaussian beams: A primer," http://arxiv.org/abs/physics/0410021v1.
  23. A. A. Yariv, Optical Electronics in Modern Communication (Oxford Univ. Press, 1997).
  24. H. Kogelnik, T. Li, "Laser beams and resonators," OSA Appl. Opt. 5, 1312-1329 (1966).
  25. TIA Specification Light Source Encircled Flux Measurement Method TIA-455-203-A (2009).
  26. C. De Cusatis, Handbook of Fiber Optic Data Communication (Academic, 2008).
  27. G. P. Agrawal, "Dispersion penalty for 1.3-μm lightwave systems with multimode semiconductor lasers," J. Lightw. Technol. 6, 620-625 (1988).
  28. K. Ogawa, "Analysis of mode partition noise in laser transmission systems," IEEE J. Quantum Electron. 18, 849-855 (1982).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited