OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2764–2769

Spatio-Temporal Self-Focusing in Femtosecond Pulse Transmission Through Multimode Optical Fibers

Graham D. Hesketh, Francesco Poletti, and Peter Horak

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2764-2769 (2012)


View Full Text Article

Acrobat PDF (591 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We numerically investigate ultra-short pulse propagation in multimode optical fibers with launch peak powers approaching the critical power for self-focusing using a generalized multimode nonlinear Schrödinger equation approach. Nonlinear spatial and temporal effects combined with fiber dispersion govern pulse compression in space and time which can result in damage-inducing intensity levels. Here we identify pulse parameters for which damage is avoided and high-power delivery through optical fiber is possible near the fiber zero-dispersion wavelength.

© 2012 IEEE

Citation
Graham D. Hesketh, Francesco Poletti, and Peter Horak, "Spatio-Temporal Self-Focusing in Femtosecond Pulse Transmission Through Multimode Optical Fibers," J. Lightwave Technol. 30, 2764-2769 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2764


Sort:  Year  |  Journal  |  Reset

References

  1. G. Fibbich, A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett. 25, 335-337 (2000).
  2. A. Galvanauskas, M. Y. Cheng, K. C. Hou, K. H. Liao, "High peak power pulse amplification in large-core Yb-doped fiber amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 559-566 (2007).
  3. S. H. Cho, H. Kumagai, K. Midorikawa, "Fabrication of multi-core structures in an optical fiber using plasma self-channeling," Opt. Exp. 11, 1780-1786 (2003).
  4. A. Couairon, A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007).
  5. F. Eilenberger, "Evolution dynamics of discrete-continuous light bullets," Phys. Rev. A 84, 013836 (2011).
  6. S. L. Chin, "The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges," Can. J. Phys. 83, 863-905 (2005).
  7. L. Berge, S. Skupin, "Self-channeling of ultrashort laser pulses in materials with anomalous dispersion," Phys. Rev. E 71, 65601 (2005).
  8. J. E. Rothenberg, "Pulse splitting during self-focusing in normally dispersive media," Opt. Lett. 17, 583-585 (1992).
  9. G. Tempea, T. Brabec, "Theory of self-focusing in a hollow waveguide," Opt. Lett. 23, 762-764 (1998).
  10. F. Poletti, P. Horak, "Dynamics of femtosecond supercontinuum generation in multimode fibers," Opt. Exp. 17, 6134-6147 (2009).
  11. F. Poletti, P. Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Amer. B 25, 1645-1654 (2008).
  12. T. Brabec, F. Krausz, "Nonlinear optical pulse propagation in the single-cycle regime," Phys. Rev. Lett. 78, 3282-3285 (1997).
  13. J. K. Ranka, A. L. Gaeta, "Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses," Opt. Lett. 23, 534-536 (2009).
  14. P. Horak, F. Poletti, Recent Progress in Optical Fiber Research (InTech, 2012) pp. 3-25.
  15. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, "Laser-induced breakdown by impact ionization in SiO$_2$ with pulse widths from 7 ns to 150 fs," App. Phys. Lett. 64, 3071-3073 (1994).
  16. C. B. Schaffer, A. Brodeur, E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
  17. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  18. A. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
  19. G. He, D. Liu, S. Liu, "Coherent Raman spectra and Raman-enhanced self-focusing in multimode fiber," Opt. Commun. 70, 145-150 (1988).
  20. K. S. Chiang, "Stimulated Raman scattering in a multimode optical fiber: Self-focusing or mode competition?," Opt. Commun. 95, 235-238 (1992).
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  22. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, P. Georges, "Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit," Opt. Lett. 32, 2520-2522 (2007).
  23. A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, A. M. Zheltikov, "Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode area photonic-crystal fiber," Opt. Commun. 280, 453-456 (2007).
  24. R. Holzwarth, Th. Udem, T. W. Hänsch, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
  25. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited