OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2770–2775

Er-Doped Fiber Laser Mode-Locked by CVD-Graphene Saturable Absorber

Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Kacper Grodecki, Piotr Paletko, Wlodzimierz Strupinski, Zdzislaw Jankiewicz, and Krzysztof M. Abramski

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2770-2775 (2012)


View Full Text Article

Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Erbium-doped fiber laser passively mode-locked by bilayer graphene is presented. The graphene layers were grown by chemical vapor deposition (CVD) on Cu substrate and transferred onto a fused silica window, forming a saturable absorber (SA). Low non-saturable losses and modulation depth as high as 55% allowed to achieve soliton pulses with over 11 nm bandwidth and nearly-transform limited 315 fs duration at 1564 nm center wavelength. The paper describes the design of the laser construction, as well as the graphene-SA preparation process. Our study demonstrates, that CVD-Cu graphene transferred on glass substrate may be used for efficient mode-locking of fiber lasers.

© 2012 IEEE

Citation
Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Kacper Grodecki, Piotr Paletko, Wlodzimierz Strupinski, Zdzislaw Jankiewicz, and Krzysztof M. Abramski, "Er-Doped Fiber Laser Mode-Locked by CVD-Graphene Saturable Absorber," J. Lightwave Technol. 30, 2770-2775 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2770


Sort:  Year  |  Journal  |  Reset

References

  1. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, D. Y. Tang, "Atomic layer graphene as saturable absorber for ultrafast pulsed laser," Adv. Funct. Mater. 19, 3077-3083 (2009).
  2. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, "Nanotube—Polymer composites for ultrafast photonics," Adv. Mater. 21, 3874-3899 (2009).
  3. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Exp. 17, 17630-17635 (2009).
  4. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, S. C. Tjin, "Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: From all anomalous dispersion to all normal dispersion," Laser Phys. Lett. 7, 591-596 (2010).
  5. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser," Appl. Phys. Lett. 96, (2010) art. no. 111112.
  6. P. L. Huang, S. Lin, C. Yeh, H. Kuo, S. Huang, G. Lin, L. Li, C. Su, W. Cheng, "Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber," Opt. Exp. 20, 2460-2465 (2012).
  7. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett. 97, (2010) art. no. 203106.
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano 4, 803-810 (2010).
  9. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, A. C. Ferrari, "A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser," Nano Res. 3, 653-660 (2010).
  10. H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh, "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker," Appl. Phys. Lett. 95, (2009) art. no. 141103.
  11. A. Martinez, K. Fuse, B. Xu, S. Yamashita, "Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing," Opt. Exp. 18, 23054-23061 (2010).
  12. A. Martinez, K. Fuse, S. Yamashita, "Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers," Appl. Phys. Lett. 99, (2011) art. no. 121107.
  13. Y. M. Chang, H. Kim, J. H. Lee, Y. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers," Appl. Phys. Lett. 97, (2010) art. no. 211102.
  14. J. Sotor, G. Sobon, K. Krzempek, K. M. Abramski, "Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber," Opt. Commun. 285, 3174-3178 (2012).
  15. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, K. P. Loh, "Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene," Opt. Lett. 35, 3622-3624 (2010).
  16. J. Liu, R. Wei, X. Xu, P. Wang, "Mode-locked fiber laser with few-layer epitaxial graphene grown on 6H-SiC substrates," Proc. CLEO:2011—Laser Applications to Photonic Applications, OSA Tech. Dig. (2011).
  17. J. Liu, S. Wu, Q. Yang, P. Wang, "High-energy all-normal-dispersion graphene mode-locked Yb-doped fiber laser," Proc. CLEO/Europe EQEC 2011 Conf .OSA Tech. Dig. (2011).
  18. J. Liu, S. Wu, Q. Yang, Y. Song, Z. Wang, P. Wang, "163 nJ graphene mode-locked Yb-doped fiber laser," Proc. CLEO:2011—Laser Applications to Photonic Appl., OSA Tech. Dig. (2011).
  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett. 9, 30-35 (2008).
  20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science 324, 1312-1314 (2009).
  21. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, J. Kong, "Transferring and identification of single- and few-layer graphene on arbitrary substrates," J. Phys. Chem. C 112, 17741-17744 (2008).
  22. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, Ch. Ann Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, C. A. Richter, "Toward clean and crackless transfer of graphene," ACS Nano 5, 9144-9153 (2011).
  23. A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Commun. 143, 47-57 (2007).
  24. J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, E. H. Conrad, "Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene," Phys. Rev. Lett. 100, (2008) art. no. 125504.
  25. N. Camara, J.-R. Huntzinger, G. Rius, A. Tiberj, N. Mestres, F. Perez-Murano, P. Godignon, J. Camassel, "Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC," Phys. Rev. B. 80, (2009) art. no. 125410.
  26. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Phys. Chem. Chem. Phys. 9, 1276-1290 (2007).
  27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, "Spatially resolved raman spectroscopy of single- and few-layer graphene," Nano Lett. 7, 238-242 (2007).
  28. P. Nemes-Incze, Z. Osvath, K. Kamaras, L. P. Biro, "Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy," Carbon 46, 1435-1442 (2008).
  29. M. Nikodem, K. Abramski, "169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser," Opt. Commun. 283, 109-112 (2010).
  30. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, K. P. Loh, "Monolayer graphene as a saturable absorber in a mode-locked laser," Nano Res. 4, 297-307 (2011).
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited