OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2890–2900

Optical Hexadecimal Coding/Decoding Using 16-QAM Signal and FWM in HNLFs

Jian Wang, Jeng-Yuan Yang, Xiaoxia Wu, and Alan E. Willner

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2890-2900 (2012)


View Full Text Article

Acrobat PDF (2222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a simple approach to manipulating the constellation of a multilevel modulation signal in the optical domain. By exploiting degenerate four-wave mixing (FWM) in highly nonlinear fibers and adopting 16-ary quadrature amplitude modulation (16-QAM) signal, we demonstrate 10-Gbaud/s optical variable symbol-wise hexadecimal coding/decoding assisted by a continuous-wave (CW) pump or a phase-modulated pump. The former takes the coding through the phase conjugation of degenerate FWM, and the latter offers enhanced coding via the combined contributions from the phase modulation of the pump and the phase-conjugated FWM. The penalty of optical signal-to-noise ratio for coding/decoding is measured to be <1.1 dB with a CW pump and <1.2 dB with a (0, Π/4) phase-modulated pump at a bit-error rate of 2e-3 (enhanced forward error correction threshold). The dependence of coding/decoding performance on the phase modulation depth of the pump and the signal/pump misalignment is also investigated. Moreover, considering that a hexadecimal number denotes four binary numbers, we develop the symbol-wise hexadecimal coding/decoding to general binary coding/decoding, i.e., 10-Gbaud/s symbol-wise hexadecimal coding/decoding is accompanied by 40-Gbit/s binary coding/ decoding.

© 2012 IEEE

Citation
Jian Wang, Jeng-Yuan Yang, Xiaoxia Wu, and Alan E. Willner, "Optical Hexadecimal Coding/Decoding Using 16-QAM Signal and FWM in HNLFs," J. Lightwave Technol. 30, 2890-2900 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2890


Sort:  Year  |  Journal  |  Reset

References

  1. M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Topics Quantum Electron. 6, 1363-1374 (2000).
  2. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, D. C. Rogers, "Nonlinear optics for high-speed digital information processing," Science 286, 1523-1528 (1999).
  3. S. Watanabe, F. Futami, "All-optical signal processing using highly-nonlinear optical fibers," IEICE Trans. Electron. E84-B, 1179-1189 (2001).
  4. S. Radic, C. J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
  5. M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, B. J. Eggleton, "Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing," IEEE J. Sel. Topics Quantum Electron. 14, 529-539 (2008).
  6. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, "High bit rate all-optical signal processing in fiber photonic wire," Opt. Exp. 16, 11506-11512 (2008).
  7. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, "All-optical signal processing using Χ(2) nonlinearities in guided-wave devices," J. Lightw. Technol. 24, 2579-2592 (2006).
  8. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photon. 2, 35-38 (2008).
  9. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nature Photon. 3, 216-219 (2009).
  10. Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, N. Park, "Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates," Opt. Quantum Electron. 40, 425-430 (2008).
  11. N. Kostinski, K. Kravtsov, P. R. Prucnal, "Demonstration of an all-optical OCDMA encryption and decryption system with variable two-code keying," IEEE Photon. Technol. Lett. 20, 2045-2047 (2008).
  12. Y.-P. Wang, C.-Q. Wu, Z. Wang, Y.-J. Wang, S.-S. Yang, "An encryption-decryption method using XOR gate based on the XPM between O-band and C-band light waves," Chin. Phys. Lett. 26, 74219-74221 (2009).
  13. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, M. B. Yu, "Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators," Opt. Lett. 35, 1620-1622 (2010).
  14. F. Bontempi, S. Pinna, N. Andriolli, C. Porzi, G. Berrettini, A. Bogoni, X. J. M. Leijtens, J. Bolk, G. Contestabile, "All-optical monolithically integrated differential XOR," presented at the Opt. Fiber Commun. Conf. Los AngelesCA (2012) Paper OTh4F.5.
  15. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, "All-optical XOR gate using semiconductor optical amplifiers without additional input beam," IEEE Photon. Technol. Lett. 14, 1436-1438 (2002).
  16. J. Wang, J. Q. Sun, Q. Z. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: Proposal and simulation," Opt. Exp. 15, 1690-1699 (2007).
  17. J. Wang, J. Q. Sun, Q. Z. Sun, "Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation," IEEE Photon. Technol. Lett. 19, 541-543 (2007).
  18. J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, M. M. Fejer, "Ultrafast all-optical three-input boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate," Opt. Lett. 33, 1419-1421 (2008).
  19. K. Chan, C. K. Chan, L. K. Chen, F. Tong, "Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs," IEEE Photon. Technol. Lett. 16, 897-899 (2004).
  20. I. Kang, C. Dorrer, J. Leuthold, "All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier," Electron. Lett. 40, 496-498 (2004).
  21. N. Deng, K. Chan, C. K. Chan, L. K. Chen, "An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier," IEEE J. Sel. Topics Quantum Electron. 12, 702-707 (2006).
  22. J. Wang, Q. Sun, J. Sun, X. Zhang, "Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber," Opt. Commun. 282, 2615-2619 (2009).
  23. J. Wang, Q. Z. Sun, J. Q. Sun, "All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing," Opt. Exp. 17, 12555-12563 (2009).
  24. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, "All-optical XOR logic gate for 40 Gb/s DPSK signals via FWM in a silicon nanowire," Opt. Exp. 19, 20364-20371 (2011).
  25. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, "Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals," Opt. Lett. 36, 710-712 (2011).
  26. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, B. J. Eggleton, "Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide," Opt. Exp. 19, 20681-20690 (2011).
  27. X. Zhou, J. Yu, "Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission," J. Lightw. Technol. 27, 3641-3653 (2009).
  28. X. Zhou, "Digital signal processing for coherent multi-level modulation formats," Chin. Opt. Lett. 8, 863-870 (2010).
  29. J. Yu, X. Zhou, "Multilevel modulations and digital coherent detection," Opt. Fiber Technol. 15, 197-208 (2009).
  30. J. Yu, X. Zhou, "Ultra-high-capacity DWDM transmission system for 100 G and beyond," IEEE Commun. Mag. 48, S56-S64 (2010).
  31. J. Yu, "Beyond 100G ethernet," IEEE Commun. Mag. 48, 26-30 (2010).
  32. S. J. Savory, "Digital coherent optical receivers: Algorithms and subsystems," IEEE J. Sel. Topics Quantum Electron. 16, 1164-1179 (2010).
  33. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D. W. Peckham, "Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM," J. Lightw. Technol. 29, 373-377 (2011).
  34. M. Nakazawa, M. Yoshida, K. Kasai, J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
  35. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. Van DenBorne, H. de Waardt, "11 x 224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 22, 1150-1152 (2010).
  36. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, L. L. Buhl, "Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM," J. Lightw. Technol. 28, 547-556 (2010).
  37. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, B. Zhu, "64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing," J. Lightw. Technol. 29, 571-577 (2011).
  38. M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, "256 QAM digital coherent optical transmission using Raman amplifiers," IEICE Trans. Commun. E94-B, 417-424 (2011).
  39. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, C. Schubert, "Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection," presented at the Opt. Fiber Commun. Conf. Los AngelesCA (2011) Paper PDPA9.
  40. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, H. Ishii, "Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification," J. Lightw. Technol. 29, 578-586 (2011).
  41. J. Wang, J. Yang, X. Wu, A. E. Willner, "Experimental demonstration of variable optical hexadecimal coding/decoding of 10-Gbaud/s 16-QAM using FWM in HNLFs," presented at the Conf. Laser Electro-Opt. San JoseCA (2011) Paper CWD4.
  42. C. S. Wong, H. K. Tsang, "Polarization-independent time-division demultiplexing using orthogonal-pumps four-wave mixing," IEEE Photon. Technol. Lett. 15, 129-131 (2003).
  43. H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, J. Xu, A. T. Clausen, L. K. Oxenløwe, P. Jeppesen, "Polarization-insensitive 640 Gb/s demultiplexing based on four wave mixing in a polarization-maintaining fibre loop," J. Lightw. Technol. 28, 1789-1795 (2010).
  44. R. M. Jopson, R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216-2217 (1993).
  45. M.-F. Huang, J. J. Yu, G.-K. Chang, "Polarization insensitive wavelength conversion for 4 x 112 Gbit/s polarization multiplexing RZ-QPSK signals," Opt. Exp. 16, 21161-21169 (2008).
  46. J. P. R. Lacey, S. J. Madden, M. A. Summerfield, "Four-channel polarization-insensitive optically transparent wavelength converter," IEEE Photon. Technol. Lett. 9, 1355-1357 (1997).
  47. P. Devgan, R. Y. Tang, V. S. Grigoryan, P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightw. Technol. 24, 3677-3682 (2006).
  48. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited