OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2901–2906

Intensity-Interrogated Sensor Based on Cascaded Fabry–Perot Laser and Microring Resonator

Jinyan Song, Lei Wang, Lei Jin, Xiang Xia, Qingli Kou, Sophie Bouchoule, and Jian-Jun He

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2901-2906 (2012)

View Full Text Article

Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A highly sensitive integrated optical biosensor based on the cascade of a Fabry–Perot cavity laser and a microring resonator is investigated theoretically and experimentally. The free spectral ranges of the microring and the laser cavity are designed to be about the same in order to apply intensity interrogation. The variation of the refractive index of the fluidic sample results in a large shift in the envelope function of the total transmission spectrum of the sensor, and consequently, a large change in the transmitted power. The simple light-source-integrated sensing scheme achieved a high sensitivity of 1000 dB/RIU in the preliminary experiment, demonstrating its principle and potential for low-cost practical applications.

© 2012 IEEE

Jinyan Song, Lei Wang, Lei Jin, Xiang Xia, Qingli Kou, Sophie Bouchoule, and Jian-Jun He, "Intensity-Interrogated Sensor Based on Cascaded Fabry–Perot Laser and Microring Resonator," J. Lightwave Technol. 30, 2901-2906 (2012)

Sort:  Year  |  Journal  |  Reset


  1. K. Matsubara, S. Kawata, S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt. 27, 1160-1163 (1988).
  2. A. K. Sharma, R. Jha, B. D. Gupta, "Fiber-optic sensors based on surface plasmon resonance: A comprehensive review," IEEE Sens. J. 7, 1118-1129 (2007).
  3. X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, R. Zhang, L. Song, Z. Wang, J. Zhu, "Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors," Sens. Actuators A, Phys. 157, 9-14 (2010).
  4. A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, S. Collin, "λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography," Nano Lett. 11, 3557-3563 (2011).
  5. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, E. Post, "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
  6. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, J. H. Schmid, "Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response," Opt. Lett. 33, 596-598 (2008).
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. R. Bienstman1, R. Baets, "Silicon-on-insulator microring resonator for sensitive and label-free biosensing," Opt. Exp. 15, 7610-7615 (2007).
  8. T. Claes, W. Bogaerts, P. Bienstman, "Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source," Opt. Lett. 36, 3320-3322 (2011).
  9. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Exp. 16, 15137-15148 (2008).
  10. L. Jin, M. Li, J.-J. He, "Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-rings resonator with Vernier effect," Opt. Commun. 284, 156-159 (2011).
  11. L. Jin, M. Li, J.-J. He, "Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source," Opt. Lett. 36, 1128-1130 (2011).
  12. S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, M. Dagenais, "Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 19, 1341-1343 (2007).
  13. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Exp. 15, 2299-2306 (2007).
  14. J. Mohr, B. Anderer, W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation," Sens. Actuators A, Phys. 27, 571-575 (1991).
  15. M. A. Webster, R. M. Pafchek, A. Mitchell, T. L. Koch, "Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguide," IEEE Photon. Technol. Lett. 19, 429-431 (2007).
  16. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Exp. 14, 9203-9210 (2006).
  17. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, M. Smit, "Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit," Opt. Exp. 14, 8154-8159 (2006).
  18. CRC Handbook of Chemistry and Physics (CRC Press, 2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited