OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2922–2928

Mono-Order High-Efficiency Dielectric Concave Diffraction Grating

Pierre Pottier and Muthukumaran Packirisamy

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2922-2928 (2012)


View Full Text Article

Acrobat PDF (1490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A planar concave diffraction grating for integrated optics is created by using a grating-distributed Bragg reflector based on dielectric materials. By combining the Bragg condition which leads to very high reflection with the grating diffraction condition which provides wavelength spreading, a mono-order diffraction grating was built with the use of elliptical facets. A computed grating efficiency of 99% was achieved by this new proposed configuration of mono-order grating by suppressing unwanted diffraction orders, while keeping aberration-free focusing.

© 2012 IEEE

Citation
Pierre Pottier and Muthukumaran Packirisamy, "Mono-Order High-Efficiency Dielectric Concave Diffraction Grating," J. Lightwave Technol. 30, 2922-2928 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2922


Sort:  Year  |  Journal  |  Reset

References

  1. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  2. Y. C. Si, Y. Cheng, WDM Technologies (Academic, 2003).
  3. P. Cheben, Optical Waveguides: From Theory to Applied Technologies (CRC Press, 2007).
  4. J. B. D. Soole, A. Scherer, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, M. A. Koza, "Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48–1.56 μm wavelength range," Appl. Phys. Lett. 58, 1949-1951 (1991).
  5. C. Cremer, G. Ebbinghaus, G. Heise, R. Müller-Nawrath, M. Schienle, L. Stoll, "Grating spectrograph in InGaAsP/InP for dense wavelength division multiplexing," Appl. Phys. Lett. 59, 627-629 (1991).
  6. P. C. Clemens, R. März, A. Reichelt, H. W. Schneider, "Flat-field spectrograph in SiO2/Si," IEEE Photon. Technol. Lett. 4, 886-887 (1992).
  7. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, D.-X. Xu, "Planar waveguide Echelle gratings in silica-on-silicon," IEEE Photon. Technol. Lett. 16, 503-505 (2004).
  8. S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, M. Pearson, "Novel architecture for design of planar lightwave interleavers," J. Lightw. Technol. 23, 1435-1440 (2005).
  9. M. K. Smit, "New focusing and dispersive planar component based on an optical phased array," Electron. Lett. 24, 385-386 (1988).
  10. J.-J. He, B. Lamontagne, A. Delâge, L. Erickson, M. Davies, E. S. Koteles, "Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP," J. Lightw. Technol. 16, 631-638 (1998).
  11. M. S. D. Smith, K. A. McGreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photonics Technol. Lett. 11, 84-86 (1999).
  12. B. B. Jian, "Etched corner reflector array lasers: A detailed study," IEEE Photon. Technol. Lett. 8, 1609-1611 (1996).
  13. P. Pottier, S. Mastroiacovo, R. M. De La Rue, "Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides," Opt. Express 14, 5617-5633 (2006).
  14. J. Brouckaert, W. Bogaerts, P. Dumon, S. K. Selvaraja, G. Roelkens, D. Van Thourhout, R. Baets, "Planar concave grating demultiplexer with distributed Bragg reflection facets," Proc. 4th IEEE Int. Conf. Group IV Photon. (2007).
  15. E. Bisaillon, J. Laniel, A. Jugessur, A. G. Kirk, "A shallow-etched multilayer grating-based wavelength demultiplexer in SOI," Proc. IEEE-LEOS 18th Annu. Meeting (2005) pp. 596-597.
  16. C. Dragone, Efficient Reflective Multiplexer Arrangement U.S. Patent 5 450 511 (1995).
  17. P. Muñoz, D. Pastor, J. Capmany, S. Sales, "Analytical and numerical analysis of phase and amplitude errors in the performance of arrayed waveguide gratings," IEEE J. Sel. Topics Quantum Electron. 8, 1130-1141 (2002).
  18. K. Maru, M. Okawa, K. Matsui, H. Uetsuka, "Statistical analysis of correlated phase error in transmission characteristics of arrayed-waveguide gratings," IEEE J. Sel. Topics Quantum Electron. 8, 1142-1148 (2002).
  19. A. Klekamp, R. Münzner, "Imaging errors in arrayed waveguide gratings," Opt. Quantum Electron. 35, 333-345 (2003).
  20. H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, S. Mitachi, "Statically-phase-compensated 10 GHz-spaced arrayed-waveguide grating," Electron. Lett. 32, 1580-1582 (1996).
  21. H. Yamada, K. Takada, Y. Inoue, K. Okamoto, S. Mitachi, "Low-crosstalk arrayed-waveguide grating multi/demultiplexer with phase compensating plate," Electron. Lett. 33, 1698-1699 (1997).
  22. J. Gehler, F. Knappe, "Crosstalk reduction of arrayed waveguide gratings by UV trimming of individual waveguides without H2-loading," Proc. Opt. Fiber Commun. Conf. (2000) pp. 236-238.
  23. W. Jiang, N. K. Fontaine, F. M. Soares, J. H. Baek, K. Okamoto, S. J. B. Yoo, F. Olsson, S. Lourdudoss, "Dynamic phase-error compensation for high-resolution InP arrayed-waveguide grating using electro-optic effect," Proc. 21st Annu. Meet. IEEE Lasers Electro-Opt. Soc. (2008) pp. 53-54.
  24. C. Dragone, "Optimum design of a planar array of tapered waveguides," J. Opt. Soc. Amer. A 7, 2081-2093 (1990).
  25. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, Y. Ohmori, "Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides," IEEE Photon. Technol. Lett. 12, 1180-1182 (2000).
  26. Y. P. Li, Optical Device Having Low Insertion Loss U.S. Patent 5 745 618 (1998).
  27. Y. Sakamaki, S. Kamei, T. Hashimoto, T. Kitoh, H. Takahashi, "Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method," J. Lightw. Technol. 27, 5710-5715 (2009).
  28. JDSU100 GHz, narrowband (Gaussian) arrayed waveguide grating (AWG) (2009) http://www.jdsu.com/ ProductLiterature/awg100n_ds_cc_ae.pdf.
  29. AWG multi/demultiplexer (2012) http://www.ntt- electronics.com/en/products/photonics/awg_mul_d.html NTT Electronics.
  30. 100 GHz wavelength division multiplexer/demultiplexer (2010) http://www.enablence.com/media/mediamanager/pdf/18-enablence-datasheet-ocsd-awg-standard-100ghzmultidemulti.pdf Enablence.
  31. 100 GHz, wideband (flat top) arrayed waveguide grating (AWG) (2009) http://www.jdsu.com/ ProductLiterature/awg100w_ds_cc_ae.pdf JDSU.
  32. P. Pottier, M. Packirisamy, "High efficiency metallic multi-stratum concave diffraction grating," Appl. Opt. 51, 4073-4077 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited