OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 18 — Sep. 15, 2012
  • pp: 2933–2940

Robust Optical Data Transfer on Silicon Photonic Chip

Tatsuya Usuki

Journal of Lightwave Technology, Vol. 30, Issue 18, pp. 2933-2940 (2012)

View Full Text Article

Acrobat PDF (1762 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


An optical data transfer system has been designed by analyzing an equivalent-circuit model for a silicon photonic chip to determine how to enhance the system gain and suppress intersymbol interference (ISI). This robust system uses three-valued logic (3VL), which is achieved by using a 1-bit delay in the Tx portion and a set–reset (SR) latch in the Rx portion. Use of the 3VL protocol results in less ISI than use of the conventional two-valued one at high bit rates. The system is also robust against internal ac coupling.

© 2012 IEEE

Tatsuya Usuki, "Robust Optical Data Transfer on Silicon Photonic Chip," J. Lightwave Technol. 30, 2933-2940 (2012)

Sort:  Year  |  Journal  |  Reset


  1. S. Assefa, W. M. J. Green, A. Rylyakov, C. Schow, F. Horst, Y. A. Vlasov, "CMOS integrated nanophotonics—Enabling technology for exascale computing systems," presented at the Opt. Fiber Commun. Conf. Los AngelesCA (2011) Paper OMM6.
  2. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, Y. Arakawa, "First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate," Opt. Exp. 19, B159-B165 (2011).
  3. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, C. W. Wong, "Electronic-photonic integrated circuits on the CMOS platform," Proc. SPIE (2006) pp. 612502-1-612502-10.
  4. D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).
  5. N. Nedovic, A. Kristensson, S. Parikh, S. Reddy, S. McLeod, N. Tzartzanis, K. Kanda, T. Yamamoto, S. Matsubara, M. Kibune, Y. Doi, S. Ide, Y. Tsunoda, T. Yamabana, T. Shibasaki, Y. Tomita, T. Hamada, M. Sugawara, T. Ikeuchi, N. Kuwata, H. Tamura, J. Ogawa, W. Walker, "A 3 Watt 39.8–44.6 Gb/s dual-mode SFI5.2 SerDes chip set in 65 nm CMOS," IEEE J. Solid-State Circuits 45, 2016-2029 (2010).
  6. G. Dambrine, D. Gloria, P. Scheer, C. Raynaud, F. Danneville, "What are the limiting parameters of deep-submicron MOSFETs for high frequency applications?," IEEE Electron Device Lett. 24, 189-191 (2003).
  7. S. Shahramian, A. C. Carusone, P. Schvan, S. P. Voinigescu, "An 81 Gb/s, 1.2 V TIALA-retimer in standard 65 nm CMOS," presented at the Compound Semicond. Integrated Circuits Symp. MontereyCA (2008).
  8. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, "Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator," Opt. Exp. 17, 22484-22490 (2009).
  9. Y. Hidaka, T. Horie, Y. Koyanagi, T. Miyoshi, H. Osone, S. Parikh, S. Reddy, T. Shibuya, Y. Umezawa, W. W. Walker, "A 4-channel 10.3 Gb/s transceiver with adaptive phase equalizer for 4-to-41dB loss PCB channel," Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2011) pp. 346-348.
  10. K. Yamaguchi, K. Sunaga, S. Kaeriyama, T. Nedachi, M. Takamiya, K. Nose, Y. Nakagawa, M. Sugawara, M. Fukaishi, "12 Gb/s duobinary signaling with x2 oversampled edge equalization," Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (2005) pp. 70-71.
  11. T. D. Ridder, X. Yin, P. Ossieur, X. Qiu, J. Vandewege, O. Chasles, A. Devos, P. D. Pauw, "Monolithic transimpedance amplifier design for large photodiode capacitance and wide temperature range," Proc. Symp. IEEE/LEOS Benelux Chapter (2005) pp. 245-248.
  12. F. Tavernier, M. Steyaert, "A 5.5 Gbit/s optical receiver in 130 nm CMOS with speed-enhanced integrated photodiode," Proc. ESSCIRC (2010) pp. 542-545.
  13. J. Fujikata, Y. Urino, S. Akiyama, T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, K. Wada, T. Nakamura, Y. Arakawa, "Differential signal transmission in silicon-photonics integrated circuit for high density optical interconnects," Proc. 8th Int. Conf. Group IV Photon. pp. 365-367.
  14. R. G. Walker, "High-speed III-V semiconductor intensity modulators," IEEE J. Quantum Electron. 27, 654-667 (1991).
  15. R. Soref, B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
  16. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Exp. 15, 17106-17113 (2007).
  17. S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, T. Horikawa, T. Usuki, "12.5-Gb/s operation with 0.29-V· cm VπL using silicon Mach-Zehnder modulator based-on forward- biased pin diode," Opt. Exp. 20, 2911-2923 (2012).
  18. S. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. M. Lennon, F. Gan, F. X. Kaertner, T. M. Lyszczarz, "Compact carrier injection based Mach-Zehnder modulator in silicon," presented at the Integr. Photon. Nanophoton. Res. Appl. Conf. Salt Lake CityUT (2007) Paper ITuE5.
  19. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Exp. 15, 430-436 (2007).
  20. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. V. Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, R. Baets, "Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides," Jpn. J. Appl. Phys. 45, 6589-6602 (2006).
  21. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, "High performance, waveguide integrated Ge photodetectors," Opt. Exp. 15, 3916-3921 (2007).
  22. L. Vivien, J. Osmond, J. Fédéi, D. Marris-Morini, P. Crozat, J. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, "42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide," Opt. Exp. 17, 6252-6257 (2009).
  23. L. Chen, M. Lipson, "Ultra-low capacitance and high speed germanium photodetectors on silicon," Opt. Exp. 17, 7901-7906 (2009).
  24. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, Y. A. Vlasov, "CMOS-integrated high-speed MSM germanium waveguide photodetector," Opt. Exp. 18, 4986-4999 (2010).
  25. J. Michel, J. F. Liu, L. C. Kimerling, "High performance Ge-on-Si photodetectors," Nature Photon. 4, 527-534 (2010).
  26. S. M. Park, J. Lee, H. Yoo, "1-Gb/s 80-dB$\Omega$ fully differential CMOS transimpedance amplifier in multichip on oxide technology for optical interconnects," IEEE J. Solid-State Circuits 39, 971-974 (2004).
  27. LAPIS KGA4153 LAPIS Semiconductor Co. Ltd. http://www.lapis-semi.com/en/semicon/optical/telecom.htm.
  28. 10 Gbps Transimpedance Amplifier, TA205C. Euvis Inc. http://www.euvis.com/products/ic/.
  29. Analog Devices ADN2820 Analog Devices http://www.analog.com/en/fiberoptic/transimpedance-amplifiers/adn2820/products/product.html.
  30. Texas Instruments ONET8501T Texas Instruments http://focus.ti.com/docs/prod/folders/print/onet8501t.html.
  31. A. Narasimha, S. Abdalla, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, Y. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, W. Xu, K. Yokoyama, P. De Dobbelaere, "An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps," presented at the Opt. Fiber Commun. Conf. San DiegoCA (2010) Paper OMV4.
  32. S. Herbert, D. Marculescu, "Variation-aware dynamic voltage/frequency scaling," Proc. IEEE 15th Int. Symp. High Perform. Comput. Architect. (2009) pp. 301-312.
  33. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, A. V. Krishnamoorthy, "Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver," Opt. Exp. 19, 5172-5186 (2011).
  34. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, "A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators," Appl. Phys. Exp. 3, 072202-1-072202-3 (2010).
  35. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, T. Baba, "10 Gb/s operation of photonic crystal silicon optical modulators," Opt. Exp. 19, 13000-13007 (2011).
  36. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  37. S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, K. Morito, "Hybrid laser with Si ring resonator and SOA for temperature control free operation with ring resonator-based modulator," Proc. 8th Int. Conf. Group IV Photon. pp. 172-174.
  38. J. F. Buckwalter, J. Kim, X. Zheng, G. Li, K. Raj, A. Krishnamoorthy, "A fully-integrated optical duobinary transceiver in a 130 nm SOI CMOS technology," Proc. Custom Integr. Circuits Conf. (2011) pp. 1-4.
  39. Y. Hidaka, W. Gai, T. Horie, J. H. Jiang, Y. Koyanagi, H. Osone, "A 4-channel 1.25–10.3 Gb/s backplane transceiver macro with 35 dB equalizer and sign-based zero-forcing adaptive control," IEEE J. Solid-State Circuits 44, 3547-3559 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited