OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 18 — Sep. 15, 2012
  • pp: 3003–3009

Optical RAM and Flip-Flops Using Bit-Input Wavelength Diversity and SOA-XGM Switches

Christos Vagionas, Dimitrios Fitsios, George T. Kanellos, Nikos Pleros, and Amalia Miliou

Journal of Lightwave Technology, Vol. 30, Issue 18, pp. 3003-3009 (2012)

View Full Text Article

Acrobat PDF (1217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we demonstrate a novel RAM cell based only on three traveling waveguide semiconductor optical amplifier-cross gain modulation (SOA-XGM) switches. The RAM cell features wavelength diversity in the incoming bit signals and provides Read/Write operation capability with true random access exclusively in the optical domain. Two of the SOA-XGM switches are coupled together through an 70/30 coupler to form an asynchronous flip-flop, which serves as the memory unit. Random access to the memory unit is granted by a third SOA-ON/OFF switch and all three SOAs together form the proposed RAM cell. Proof-of-principle operation is experimentally demonstrated at 8 Mb/s using commercial fiber-pigtailed components. The distinctive simplicity of the proposed RAM cell architecture suggests reduced footprint. The proposed flip-flop layout holds all the credentials for reaching multi-Gb/s operational speeds, if photonic integration technologies are employed to obtain wavelength-scale waveguides and ultrashort coupling lengths. This is numerically confirmed for 10 Gb/s using a simulation model based on the transfer matrix method and a wideband steady-state material gain coefficient.

© 2012 IEEE

Christos Vagionas, Dimitrios Fitsios, George T. Kanellos, Nikos Pleros, and Amalia Miliou, "Optical RAM and Flip-Flops Using Bit-Input Wavelength Diversity and SOA-XGM Switches," J. Lightwave Technol. 30, 3003-3009 (2012)

Sort:  Year  |  Journal  |  Reset


  1. A. Y. Vlasov, "Silicon photonics for next generation computing systems," 34th Eur. Conf. Opt. Commun. BrusselsBelgium (2008) Tu.1.A.1.
  2. C. Chun-Kit, K. L. Sherman, M. Zirngibl, "A fast 100-channel wavelength-tunable transmitter for optical packet switching," IEEE Photon. Technol. Lett. 13, 729-731 (2002).
  3. B. G. Lee, A. Biberman, J. Chan, K. Bergman, "High-performance modulators and switches for silicon photonic networks-on-chip," IEEE J. Sel. Topics Quantum Electron. 16, 6-21 (2010).
  4. S. Fama, L. Colace, G. Masini, G. Assanto, H. C. Luan, "High performance germanium-on-silicon detectors for optical communications," Appl. Phys. Lett. 81, 586-588 (2002).
  5. S. C. Nicholes, M. L. Masanovic, B. Jevremovic, E. Lively, L. A. Coldren, "An 8$\,\times\,$8 InP monolithic tunable optical router (MOTOR) packet forwarding chip," J. Lightw. Technol. 28, 641-650 (2010).
  6. C. Minkenberg, F. Abel, P. Muller, R. Krishnamurthy, M. Gusat, P. Dill, I. Iliadis, R. R. Hemenway, R. Grzybowski, E. Schiattarella, "Designing a crossbar scheduler for HPC applications," IEEE Micro 26, 58-71 (2006).
  7. S. McKee, "Reflections on the memory wall," 1st Conf. Comput. Front. IschiaItaly (2004).
  8. L. Stampoulidis, E. Kehayas, D. Apostolopoulos, P. Bakopoulos, K. Vyrsokinos, H. Avramopoulos, "On-the-Fly all-optical contention resolution for NRZ and RZ data formats using packet envelope detection and integrated optical switches," IEEE Photon. Technol. Lett. 19, 538-540 (2007).
  9. E. F. Burmeister, D. J. Blumenthal, J. E. Bowers, "A comparison of optical buffering," Opt. Switch. Netw. 5, 10-18 (2008).
  10. W. A. Vanderbauwhede, H. Novella, "A multiexit recirculating optical packet buffer," IEEE Photon. Technol. Lett. 17, 1749-1751 (2005).
  11. R. Takahashi, T. Nakahara, K. Takahata, T. Yasui, N. Kondo, H. Suzuki, "Photonic random access memory for 40-Gb/s 16-b burst optical packets," IEEE Photon. Technol. Lett. 16, 1185-1187 (2004).
  12. L. A. Polka, H. Kalyanam, G. Hu, S. Krishnamoorthy, "Package technology to address the memory bandwidth challenge for tera-scale computing," Intel Technol. J. 11, 197-205 (2007).
  13. F. Scotti, G. Berrettini, G. Contestabile, A. Bogoni, "A regenerative variable optical buffer for NRZ and RZ packets," J. Lightw. Technol. 30, 1366-1372 (2012).
  14. E. Tangdiongga, X. Yang, Z. Li, Y. Liu, D. Lenstra, G.-D. Khoe, H. J. S. Dorren, "Optical flip-flop based on two-coupled mode-locked ring lasers," IEEE Photon. Technol. Lett. 17, 208-210 (2005).
  15. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, G. Morthier, "An ultra-small, low-power, all-optical flip-flop memory on a silicon chip," Nature Photon. 4, 182-187 (2010).
  16. M. T. Hill, H. de Waardt, G. D. Khoe, H. J. S. Dorren, "Fast optical flip-flop by use of Mach–Zehnder Interferometers," Microwave Opt. Technol. Lett. 31, 411-415 (2001).
  17. Y. Liu, R. Mcdougall, M. T. Hill, G. Maxwell, S. Zhang, R. Harmon, F. M. Huijskens, L. River, H. J. S. Dorren, A. Poustie, "Packaged and hybrid integrated all-optical flip-flop memory," Electron. Lett. 42, 1399-1400 (2006).
  18. K. Huybrechts, G. Morthier, R. Baets, "Fast all-optical flip-flop based on a single distributed feedback laser diode," Opt. Exp. 16, 11405-11410 (2008).
  19. J. Sakaguchi, T. Katayama, H. Kawaguchi, "High switching-speed operation of optical memory based on polarization bistable vertical-cavity surface-emitting laser," J. Quantum Electron. 46, 1526-1534 (2010).
  20. N. Pleros, D. Apostolopoulos, D. Petrantonakis, C. Stamatiadis, H. Avramopoulos, "Optical static RAM cell," IEEE Photon. Technol. Lett. 21, 73-75 (2009).
  21. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, S. Yu, "Optical static random access memory cell using an integrated semiconductor ring laser," Int. Conf. Photon. Switch. PisaItaly (2009).
  22. D. Fitsios, K. Vyrsokinos, A. Miliou, N. Pleros, "Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates," IEEE J. Sel. Topics Quantum Electron. 18, 1006-1015 (2012).
  23. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, M. Notomi, "Ultralow-power all optical RAM based on nanocavities," Nature Photon. 6, 248-252 (2012).
  24. G. Berrettini, L. Poti, A. Bogoni, "Optical dynamic RAM for all-optical digital processing," IEEE Photon. Technol. Lett. 23, 685-687 (2011).
  25. C. Vagionas, D. Fitsios, G. T. Kanellos, N. Pleros, A. Miliou, "All optical flip flop with two coupled travelling waveguide SOA-XGM switches," Quantum Electron. Laser Sci. San JoseCA (2012).
  26. C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, T. Tekin, "Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging," IEEE J. Sel. Topics Quantum Electron. 17, 498-509 (2011).
  27. Y. Naito, S. Shimizu, N. Fukui, T. Kato, K. Kobayashi, H. Uenohara, "Set/reset operation of a monolithically-integrated InP SOA-MZI-type all-optical flip-flop circuit with a feedback loop," Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf. Los AngelesCA (2012) JTh2A.10.
  28. M. Hattori, K. Nishimura, R. Inohara, M. Usami, "Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter," J. Lightw. Technol. 25, 512-519 (2007).
  29. M. G. Davis, R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
  30. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
  31. A. Matsumoto, K. Nishimura, K. Utaka, M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
  32. E. Yoshida, T. A. Tanaka, "A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high- speed embedded memory," IEEE Trans. Electron Devices 53, 692-697 (2006).
  33. N. Shibata, M. Watanabe, H. Okiyama, "A high-speed low-power multi-VDD CMOS/SIMOX SRAM with LV-TTL level input/output pins-write/read assist techniques for 1-V operated memory cells," IEEE J. Solid-State Circuits 45, 1856-1869 (2010).
  34. Y. Niki, A. Kawasumi, A. Suzuki, Y. Takeyama, O. Hirabayashi, K. Kushida, F. Tachibana, Y. Fujimura, T. Yabe, "A digitized replica bitline delay technique for random-variation-tolerant timing generation of SRAM sense amplifiers," IEEE J. Solid-State Circuits 46, 2545-2551 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited